
Skip the Intersection: Quickly Counting Common
Neighbors on Shared-Memory Systems

Xiaojing An∗, Kasimir Gabert∗, James Fox, Oded Green, David A. Bader
Georgia Institute of Technology, Atlanta, Georgia

Email: anxiaojing, kasimir, foxjas, ogreen @gatech.edu, bader@cc.gatech.edu
∗The first two authors contributed equally to the work.

Abstract—Counting common neighbors between all vertex
pairs in a graph is a fundamental operation, with uses in simi-
larity measures, link prediction, graph compression, community
detection, and more. Current shared-memory approaches either
rely on set intersections or are not readily parallelizable. We
introduce a new efficient and parallelizable algorithm to count
common neighbors: starting at a wedge endpoint, we iterate
through all wedges in the graph, and increment the common
neighbor count for each endpoint pair. This exactly counts the
common neighbors between all pairs without using set intersec-
tions, and as such attains an asymptotic improvement in runtime.
Furthermore, our algorithm is simple to implement and only
slight modifications are required for existing implementations to
use our results. We provide an OpenMP implementation and
evaluate it on real-world and synthetic graphs, demonstrating
no loss of scalability and an asymptotic improvement. We show
intersections are neither necessary nor helpful for computing all
pairs common neighbor counts.

I. INTRODUCTION

Computing the number of neighbors shared between two
vertices, or the common neighbor count, is an important
kernel in graph analytics: its direct applications include link
prediction[1], graph compression[2], and uncovering topo-
logical modules[3]; it is foundational for vertex similar-
ity measures[4], including the Jaccard Index[5], Resource
Allocation[6], Adamic/Adar[7], cosine similarity[8], and topo-
logical overlap[3]; and it is computationally related to triangle
counting, which is of considerable interest[9].

A straightforward way of computing the common neighbor
count between any pair of vertices is to compute the size of
the intersection of those vertices’ adjacency lists. This allows
each pair to be computed independently of other pairs, and
to date this has been the primary approach used in existing
shared memory algorithms and implementations. We show that
such set-intersection based approaches have an unnecessary
asymptotic factor in run-time complexity related to the degree
of the graph, and viewing the problem through a different lens

Funding was provided in part by the Defense Advanced Research Projects
Agency (DARPA) under Contract Number FA8750-17-C-0086, the U.S.
Department of Homeland Security under Cooperative Agreement No. 2017-
ST-061-QA001-01, and by the Doctoral Studies Program at Sandia National
Laboratories. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the funding agencies.

allows for a parallel, scalable algorithm that exactly computes
common neighbors, and derivatives, without set intersections.

Consider a graph G = (V,E), where n = |V | represents the
number of vertices and m = |E| the number of edges. Without
additional insights, getting the common neighbor counts be-
tween all pairs of vertices requires O(n2) set intersections, as
each pair may have a non-zero common neighbor count. Prior
work[10], [11], [2] have made the additional observation that
the output will always be zero between two vertices unless
there exists a wedge, or a path of length two, between them.
Incorporating this insight reduces the number of required set
intersections and brings the overall complexity cost down from
O(n2∆) to O(m∆2), where ∆ is the maximum degree in the
graph, and with p processors to O(n∆3/p).

We demonstrate that we can do away with the set inter-
section completely. This is an asymptotic improvement and
results in a parallelizable shared-memory algorithm running
with O(m∆) total operations and O(n∆2/p) per processor.

Our key insight stems from realizing that finding
wedges[10], [11], [2], which is done to reduce the intersec-
tions from O(n2) to O(m∆), already implicitly counts the
common neighbors. Each wedge not only represents a non-
zero between the endpoints, but represents exactly one of the
common neighbor relationships between them. So, we keep
track of the number of wedges iterated over for each endpoint,
and this exactly counts common neighbors. This provides an
asymptotic improvement by a factor of the maximum degree,
which is crucial for graphs with many high degree vertices,
and also allows for effective parallelism. This work confirms
Gustavson’s more general matrix multiplication results[12].

Our main contributions are as follows:
• We propose a new algorithm that is parallel and asymp-

totically faster than prior set intersection based methods
• We provide OpenMP implementations of our new algo-

rithm and a competitive parallel set intersection approach
• We evaluate them on real-world and synthetic graphs

demonstrate that our new algorithm is asymptotically
faster than prior set intersection based approaches

The remainder of this paper is structured as follows. Sec-
tion II describes related work, Section III presents nota-
tion, definitions, and current approaches, Section IV presents
our wedge iteration algorithm and Section V describes our
OpenMP and GAP[13] implementation. Section VI contains
our experiments and results and Section VII concludes.

II. RELATED WORK

Many existing implementations for computing common
neighbor counts and similarity indices are based on set in-
tersections. NetworkX[14] is a Python package for studying
complex networks, and includes many vertex similarity indices
targeting link prediction, all using set intersection. Igraph[15]
is a sequential C++ network analysis library that also im-
plements several similarity indices. It computes the Jaccard
and Sörensen indices using set intersection. For Adamic/Adar
and cocitation is uses a midpoint wedge iteration method
which achieves the time complexity of our methods, but
is not memory-scalable, will not support efficient parallel
implementations, and cannot effectively support top-k results
and other applications. Sparkling-Graph[16] implements com-
mon neighbor counting and Adamic/Adar for link prediction
using set intersections. Neo4j[17] is a graph database system
that supports the Jaccard Index, among other indices, and
its implementation is set-intersection based. Song et al. [18]
compares common neighbor count and Adamic/Adar with
other methods for link prediction and computes these methods
again by measuring the size of set intersections.

Common neighbors and related similarity indices have also
been developed for distributed systems. Zadeh et al. [19] uses
sampling based on non-zero elements of columns to avoid
exact calculation of all pairs, and accurately estimate cosine
similarities using MapReduce. Apache Flink[20] implements
the Jaccard Index using similar ideas. Garcia et al. [21]
applies a similar strategy as in Flink, but in a ScaleGraph
based implementation for common neighbor count. However,
the authors note that due to communication and synchronize
overhead, distributed system implementations are not more
efficient than OpenMP based set intersection implementations
and we show that they may only be required when the graph
no longer fits in shared memory.

The problem of all pairs common neighbors can also be for-
mulated as a matrix multiplication, that is given the adjacency
matrix A, computing A2 and considering the non-diagonal
entries. Gustavson [12] presents an efficient sequential for-
mulation for sparse matrix-matrix multiplication. Numerous
parallel implementations [22], [23], [24], [25] have built on
this essential approach, with key differences in how accumu-
lation of row results are handled (among other optimizations).
Combinatorial BLAS [26], Kokkos [27] and Intel MKL[28]
are examples of broader libraries and/or programming models
tackling sparse kernels, with SpGEMM being one instance.
We note that our graph-centric method for common neighbors
can be extended to general SpGEMM, with similarities to
existing SpGEMM methodology and vice versa. However, as
our focus is the common neighbors problem, our methods were
developed independently and optimized accordingly. Our algo-
rithm is able to extend to multiple similarity indices, including
Jaccard Indices, Adamic/Adar, and top-k variations that do
not have established SpGEMM analogues. We compare with
the Intel MKL[28] SpGEMM implementation, as it is a high-
performance implementation that’s often compared against in

other SpGEMM papers. We discuss our methodology and
results in Section VI.

Diamond sampling has been proposed to quickly and ap-
proximately find the largest common neighbors[29]. This work
states that directly computing common neighbors is infeasible
for large graphs, however our new approach can be extended
to such applications with exact results on massive graphs due
to the parallel structure of our algorithm and its suitability for
filtering unnecessary computation on only the top-k results.
We leave such top-k extensions to future work.

Despite the considerable body of work on common neigh-
bors and similarity indices, there still remains a need for effi-
cient algorithms [30], [31]. This work focuses on computing
all vertex pairs’ indices on shared memory systems. Our imple-
mentations for the all common neighbors problem are O(∆)
faster than any other shared-memory parallel implementations
and are shown to scale to large graphs.

III. BACKGROUND

A. Formal Notation and Problem Definition

Following is the notation used throughout this paper. Let
G = (V,E) be a graph, where V is the vertex set and E is
the edge set, with |V | = n and |E| = m. The adjacency list
of a vertex u is given by Γu. The maximum degree of any
vertex in the graph is given by ∆(G) := ∆. A wedge is a
graph with three vertices and two edges, or a length-2 path.
For consistency, we only present algorithms assuming graphs
that are undirected. However, our algorithm can easily extend
to directed graphs.

Common neighbor counting finds, for each pair of vertices
u, v ∈ V , the number of neighbors that u and v have in
common. Conceptually, the output is a matrix of size O(n2)
where each u, v-th entry correspond to the number of common
neighbors shared by vertices u and v. Importantly, u and
v need not necessarily be neighbors themselves. The case
where u and v are restricted to being neighbors is the triangle
counting problem, which has received considerable attention
in the literature [32], [33], [34].

More precisely, let the common neighbor count between u
and v, denoted by CNu,v , be given by

CNu,v = |Γu ∩ Γv| .

For the remainder of this work, we assume the graph is stored
in a sparse matrix format with unsorted adjacency lists, so
iterating the neighbor list for a vertex is O(∆) and retrieving
the degree of a vertex is O(1).

B. Common Neighbor Counting Based on Set Intersection

Most existing work on all pairs common neighbor count are
based on set intersections. Common neighbor counting using
set intersections proceed in two steps: first identifying possible
vertex pairs; then, computing a set intersection with each pair
of vertices’ respective adjacency lists.

Naively, all n2 vertex pairs have to be considered in the first
step. This is prohibitively expensive and means that common
neighbor counting won’t scale in most cases. Other work

1 2

3 4

5

6

Fig. 1. A simple graph. An optimized set-intersection based approach
first finds all neighbors connected by a wedge and then computes pair-
wise set intersections between them. Starting at 1, all possible wedges
are 123, 143, 132, 134. We had the insight that discovering each possible
wedge is enough to compute the common neighbor counts. A set intersection
approach would first find 123, then compute Γ1 ∩Γ3 = {2, 3, 4}∩{1, 2, 4}
to get CN1,3 = |{2, 4}| = 2. Next, 143 would be visited, but since CN1,3

is non-zero no second set intersection would run, resulting in wasted graph
iteration work or extraneous set intersection work. As there is no wedge
between 1 and 5, no set intersection will be performed for that pair, showing
the improvement over the naı̈ve n2 approach.

have reduced the number of vertex pairs in the first step by
only considering vertex pairs that are connected by a wedge,
meaning all pairs that share at least one common neighbor
are considered. That is, all wedges are iterated through and
for each distinct resulting pair a set intersection between their
adjacency lists is performed. This results in O(n∆2) vertex
pairs[10], [11], [2], a significant improvement over O(n2)
pairs. We identify a tighter bound at O(m∆) pairs.

In Figure 1, we demonstrate common neighbor counting
via set intersection for a simple graph of six vertices V =
{1, . . . , 6}. To calculate the common neighbor counts starting
at vertex 1, efficient prior approaches begin by enumerating the
wedges 123, 143, 132, and 134. Then, for each wedge, if the
output has not been computed yet (it is zero) a set intersection
is performed to get the common neighbor count for that pair.
Note that the pair (1, 3) will be visited twice (and importantly
the common neighbor count is also 2) but during the second
visit no set intersection will be performed. Figure 2 highlights
our new, more efficient approach.

The pseudocode for wedge iteration set-intersection based
common neighbor counting is given in Algorithm 1. Various
optimizations and strategies have been developed for the actual
set intersection operation, mostly in the context of triangle
counting [35], [36], [37], [38], [39], [40]. O(∆) is the best
time complexity known for set intersection, therefore the total
time complexity for set-intersection based common neighbors
is O(m∆2)[10], [11], [2].

The memory required for storing the entire output is
O(min{m∆, n2}). Since we are dealing with sparse graphs,
with m = O(n2), O(m∆) memory is needed.

C. Other Indices and Applications

Common neighbor count is the foundation for and can
be extended to many other vertex similarity measures. Our
approach is able to extend to at least five other common
neighbor count based indices: Jaccard Index, Cosine Similar-
ity, Sørenson Index, Resource Allocation, and Adamic/Adar.
Such extensions are left to future work. Vertex similarity is
a key kernel for applications such as link prediction, graph
compression and structure extraction, graph ordering, and
community detection[1], [2], [3].

1 2

3 4

5

6

Fig. 2. The same simple graph as Figure 1, and a continuation of common
neighbor counting from vertex 1 using wedge iteration. Since both 123 and
143 are iterated, the common neighbor count CN1,3 = 1 + 1 = 2, and
no asymptotically additional work nor set intersections are required. We
have rephrased common neighbor counting from calculating set intersections
between each pair of vertices to iterating the graph to find all wedge subgraphs,
which is already being performed in order to find non-zero vertex pairs.

Link prediction, as the name suggests, predicts the existence
of “missing” links, due to errors or incomplete data. Numerous
approaches have been applied studied for link prediction,
including using vertex or edge attributes, graph topology,
and machine-learning models. Despite its simplicity, common
neighbor counts and its indices perform surprisingly well on
many real-world networks and have been shown to beat more
sophisticated approaches in link prediction[41], [11].

Graph compression is a process that reduces a graph’s
memory or disk usage. Navlakha et al. [2] propose a common
neighbor based graph compression strategy, which outper-
forms other contemporary approaches.

Graph ordering finds a permutation of vertex ordering that
improves locality of access to vertex data. While this problem
is NP-hard[42], many heuristics have been proposed and a
greedy common neighbor counting approach[42] provided
the highest quality ordering compared to other contemporary
approaches.

Common neighbors counting is also used in similarity-based
community detection algorithms[43], including to identify
hierarchical communities in metabolic networks[3].

IV. WEDGE ITERATION COMMON NEIGHBOR COUNTING

In this section, we introduce our new algorithm for counting
common neighbors. This approach is asymptotically faster
than set intersection-based methods and remains scalable. It
is based on a simple observation: for every wedge, or length-
2 path of vertices, the middle vertex in the wedge is a common
neighbor of the endpoint vertices.

Our algorithm then iterates over each wedge and increments
the common neighbor count for each endpoint pair. For
conceptual clarity we present a sequential algorithm, and defer
details about parallelism to Section V.

Algorithm 1 Common neighbors counting by intersecting
adjacency lists of all vertex pairs in wedges

1: procedure WEDGE-SET-INTERSECTION-CN
2: Initialize CNu,v ← 0, ∀u, v ∈ V
3: for v ∈ V do
4: for u ∈ Γv do
5: for w ∈ Γu do
6: if CNv,w = 0 and v > w then
7: CNv,w = |Γv ∩ Γw|

Algorithm 2 Wedge iteration common neighbors counting
1: procedure WEDGE-ITERATION-CN
2: Initialize CNu,v ← 0, ∀u, v ∈ V
3: for v ∈ V do
4: for u ∈ Γv do
5: for w ∈ Γu do
6: if v > w then
7: CNv,w ← CNv,w + 1

Figure 2 provides an example to illustrate how to take
advantage of iterating wedges. Unlike in the set-intersection
example in Figure 1, visiting the wedge 143 is not wasted
work; instead it is used to increment the common neighbor
count between 1 and 3. By doing this, there is no need for a set
intersection and no additional graph operations are performed.

It is set intersection free, naturally amenable to sparse
output, supports applications such as only computing the top-k
results, and is readily parallelizeable.

The pseudo-code can be found in Algorithm 2.
a) Complexity Analysis: By combining loops in lines 3,

4 and 5, we get the number of loops as

Θ

 ∑
(v,u)∈E

(|Γv|+ |Γu|)

 = Θ

(∑
v∈V
|Γv|2

)
= O(m∆).

Line 6 and 7 are O(1), and so the total is O(m∆).
To understand the memory complexity, it is important to

note that this algorithm starts from an endpoint, as opposed to
starting from a midpoint. Computing 2-hop neighbors from
an endpoint means that only O(n) memory is required to
accumulate all possible outputs that involve the given endpoint.
The O(n) memory allocated can then also be recycled for
latter iterations. As such, the overall memory requirement is
O(n + m∆) for computation and storage.

b) Algorithm Correctness: We provide a simple argu-
ment of correctness.

Proof. We want to show CNu,v = |Γu ∩ Γv| is equal to the
number of wedges with u and v as endpoints. Then, iterating
all wedges will successfully count the common neighbors. Let
u, v ∈ V be distinct. The proof proceeds by definition.

A wedge consists of two edges and three vertices, all
distinct. Suppose there are k wedges with u and v as endpoints.
Let the midpoints be x1, . . . , xk, each distinct. Then, xj ∈ Γu

and xj ∈ Γv for 1 ≤ j ≤ k, due to each edge in the wedge.
So, CNu,v ≥ k. Suppose CNu,v > k. Then, there exists
some x′ such that x′ ∈ Γv ∩ Γu, with u, v, x′ all distinct
and {u, x′}, {v, x′} ∈ E. This then forms a k + 1 wedge, a
contradiction with there being k wedges.

V. IMPLEMENTATIONS AND OPTIMIZATIONS

We implemented our algorithm using OpenMP within the
GAP[13] framework. We support both sparse output and
counting only, and to perform a fair comparison with the
wedge iteration set intersection based methods, we imple-
mented an efficient set intersection method as well.

Algorithm 3 Wedge based common neighbors counting with
sparse matrix output

1: procedure ENDPOINT-CN
2: . data initialization
3: parallel-for each thread do
4: owner[n]← {0, . . . } . ownership sign
5: buffer[n]← {0, . . . } . cn counts
6: out[n]← {NULL, . . . } . sparse output
7: pos[n]← {0, . . . } . storing position
8: end parallel-for
9: parallel-for v ∈ V do

10: length← 0
11: for u ∈ Γv do . neighbors
12: for w ∈ Γu do . second neighbors
13: if v ≤ w then
14: continue
15: o← owner[w]
16: if buffer[w] 6= 0 and o 6= v then
17: . offload data
18: out[o][pos[o]]← (w,buffer[w])
19: pos[o]← pos[o] + 1
20: buffer[w]← 0 . reset buffer

21: if buffer[w] = 0 then
22: owner[w]← v . claim
23: length← length + 1

24: buffer[w]← buffer[w] + 1 . update

25: out[v]← malloc(length)
26: end parallel-for
27: . offload remaining data
28: parallel-for each thread do
29: for i ∈ [n] do
30: if buffer[i] 6= 0 then
31: o← owner[i]
32: out[o][pos[o]]← (i,buffer[i])
33: pos[i]← pos[i] + 1

34: end parallel-for

We treat each vertex in parallel and use dynamic task
scheduling and parallel reductions. Each processor allocates
a buffer of size n. To provide an efficient implementation, we
perform “lazy offloading” of the results. The key idea is to
accumulate the results corresponding to a vertex and then add
an “owner” to each element in buffer. Instead of resetting the
buffer after every vertex’s calculation is finished the algorithm
moves forward with a dirty buffer. Whenever a buffer element
is accessed, we check the owner status: if it is a different owner
the data is offloaded, and then after ownership is claimed the
value is updated. After all vertices have been processed, a final
O(n) pass is made through the buffer to offload any remaining
results. The pseudocode for our OpenMP implementation can
be found in Algorithm 3.

Most existing shared memory implementations we could
find performed all pairs set intersection and stored results as
dense output. These implementations are much slower than

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

k
a

ra
te

 (
1

5
6

)

d
o

lp
h

in
s
 (

3
1

8
)

c
h

e
s
a

p
e

a
k
e

 (
3

4
0

)

le
s
m

is
 (

7
3

3
)

a
d

jn
o

u
n

 (
8

5
0

)

p
o

lb
o

o
k
s
 (

8
8

2
)

fo
o

tb
a

ll
(1

.2
k
)

c
e

le
g

a
n

s
_

m
e

ta
b

o
lic

 (
4

k
)

ja
z
z
 (

5
.5

k
)

n
e

ts
c
ie

n
c
e

 (
5

.5
k
)

c
e

le
g

a
n

s
n

e
u

ra
l
(5

.7
k
)

e
m

a
il

(1
0

k
)

p
o
w

e
r

(1
3

k
)

h
e

p
−

th
 (

3
2

k
)

p
o

lb
lo

g
s
 (

3
3

k
)

P
G

P
g

ia
n

tc
o

m
p

o
 (

4
9

k
)

c
o

n
d

−
m

a
t

(9
5

k
)

a
s
−

2
2

ju
ly

0
6

 (
9

7
k
)

c
o

n
d

−
m

a
t−

2
0

0
3

 (
2

4
0

k
)

c
o

n
d

−
m

a
t−

2
0

0
5

 (
3

5
2

k
)

a
s
tr

o
−

p
h

 (
2

4
3

k
)

G
_

n
_

p
in

_
p

o
u

t
(1

m
)

p
re

fe
re

n
ti
a

lA
tt

a
c
h

m
e

n
t

(1
m

)

s
m

a
llw

o
rl

d
 (

1
m

)

c
a

id
a

R
o

u
te

rL
e
ve

l
(1

.2
2

m
)

c
n

r−
2

0
0

0
 (

5
.4

8
m

)

in
−

2
0

0
4

 (
2

7
.2

m
)

e
u

−
2

0
0

5
 (

3
2

.3
m

)

ro
a

d
_

c
e

n
tr

a
l
(3

3
.8

m
)

ro
a

d
_

u
s
a

 (
5

7
.7

m
)

u
k
−

2
0

0
2

 (
5

2
4

m
)

Graphs (Edge Count)

R
u
n
ti
m

e
 (

s
e
c
)

Seq. Algorithm

igraph

networkx

mkl−seq

si−seq

end−seq

DIMACS 10 Clustering Graphs

Comparison With Existing Libraries

Fig. 3. Performance comparison on small graphs with our wedge iteration algorithm (end) against our set intersection implementation (si) and other libraries.
We limit execution to be sequential to compare algorithmically with the inherently sequential algorithms. Our parallel sparse output algorithm runs on the
most difficult graph here, uk_2002, in under 45 seconds. MKL, igraph, and NetworkX were not able to run successfully, either due to bugs or a time cutoff
of two days, on several graphs as noted by missing points. Sequentially we are faster than other approaches including the highly optimized Intel MKL.

10

20

8 8 16 16 32 32

Number of Threads

S
p

e
e

d
u

p
 R

e
l.
 t

o
 p

=
1

Alg

end

si

2^19

2^22

2^25

Num Wedges

Each point is the average of 16 trials on a static GraphChallenge graph

Scalability of Wedge Iteration vs Set Intersection

Fig. 4. The number of threads is varied for both our wedge iteration
implementation (end) and our set intersection implementation (si). Each point
represents the average of 16 trials running common neighbor counting on a
GraphChallenge static challenge graph[9]. The first violin plot (red) shows the
probability density of the runtime points from our algorithm and the second
(green) shows the probability density of the set iteration runtime points, and
the raw data points are in the middle. Our algorithm remains similarly scalable,
input graph dependent, while providing an asymptotic run-time improvement.

the wedge iteration set intersection approach (Algorithm 1)
and cannot scale to large graphs. Besides comparing with
existing libraries, we also implemented Algorithm 1 within our
OpenMP system and applied further optimizations to provide
a fairer comparison, including using a lookup table for set
intersection, memory pre-allocation, dynamic scheduling, and
lazy offloading.

2.5

5.0

7.5

0 5 10 15 20

Average Vertex Degree

S
p

e
e

d
u

p
 R

e
l.
 t

o
 S

I
p

=
3

2

2^19

2^22

2^25

Num Wedges

Each point is the average of 16 trials on a static GraphChallenge graph

Wedge Iteration Improvement on Real−World Graphs

Fig. 5. We show the speedup of wedge iteration over set intersection
based methods on the SNAP and other real-world graphs from the static
GraphChallenge dataset[9]. In all cases our algorithm is faster.

VI. EXPERIMENTS AND RESULTS

In this section we describe the experiments we performed to
evaluate our algorithm. We compare our algorithm against the
shared memory dense midpoint and set intersection algorithms
provided by igraph[15] and NetworkX[44] respectively along
with the highly optimized Intel MKL[28]. We developed
a GAP wrapper for common neighbors using Intel MKL.
For our NetworkX evaluation, we implemented a Python
implementation of Algorithm 1. For fairness we additionally
evaluated against our own set intersection implementation.
We ensured correctness by comparing the resulting common

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

17.5 20.0 22.5 25.0

Graph Scale

T
im

e
 (

s
e

c
)

Alg

end

si

Graph

erdos−renyi

kronecker

Scale is Varied for Degree 15 Kronecker and Erdos−Renyi Graphs

Impact of Scale on Wedge Iteration vs Set Intersection

Fig. 6. The scale of the graph is varied. Above scale 25 terabytes of storage
are be required to store outputs, and so larger graphs are good candidates
for applications such as returning only the top-k results. In both cases our
wedge iteration (end) is around an order of magnitude faster than si and as
the degree is held constant, the asymptotic difference is not yet apparent.

L
o
g
.L

in
e
a
r

L
o
g
.L

o
g

10 100

0

2500

5000

7500

10000

1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

Average Vertex Degree

T
im

e
 (

s
e

c
)

Alg

end

si

Graph

erdos−renyi

kronecker

Degree is Varied for Scale 18 Kronecker and Erdos−Renyi Graphs

Impact of Degree on Wedge Iteration vs Set Intersection

Fig. 7. The graph degree is varied. Note that Kronecker graphs have a skewed
degree distribution resulting in more small degree vertices, and so asymptotic
improvement is not as significant, showing that the improvement is related
to the number of larger degree vertices. The asymptotic improvement can be
seen clearly by comparing end and si in the Erdős-Rényi graphs. This further
shows that our analysis is not tight to the maximum degree and the asymptotic
improvement is in fact related to the degree distribution.

neighbor counts against NetworkX, igraph, and MKL.
Our experiments were run on commodity servers with dual

socket Intel Xeon E5-2683 v4 at 2.10GHz processors with
32 cores across four NUMA nodes with 20M L3 cache and
512 GB of RAM running Ubuntu 16.04. In all cases besides
the sequential comparisons, we relabeled the input graphs
in decreasing order by degree, a common way to balance
workload[45], [46].

a) Comparison with Other Libraries: For a fair compar-
ison, we limit our parallel algorithm to run sequentially and
evaluate it against other available shared memory libraries,
which do not support parallel execution, on small graphs
from the DIMACS10 clustering graph challenge[47]. Figure 3
contains the results of this experiment. Our implementations

consistently outperform igraph and NetworkX, and as the
graph scale increases our sequential speedup increases, from
2 to 220. For many of the larger graphs, neither igraph nor
NetworkX were able to return any results due to memory
constraints. We remain competitive with the highly optimized
Intel MKL, beating it with sequential execution in every case
except for eu-2005. We note that MKL’s SpGEMM does not
account for symmetry and produces more output pairs than
necessary. Similar to other reported problems with MKL [48],
we were not able to successfully run it when the number of
vertices exceeded one million, and so it did not finish in all
instances such as in-2004.

b) Evaluating Algorithm Behavior: Figure 4 shows that
our scalability remains similar to the older set intersection
based method and Figure 5 shows that we have speedup
across all static GraphChallenge real-world graphs[9]. To
further understand our algorithm’s scalability and behavior,
we run with different synthetic graphs, both Kronecker[49]
with the Graph500 parameters[50] and Erdős-Rényi graphs.
These synthetic graphs were chosen as they have different
degree distributions and so help understand how tight the
O(∆) asymptotic improvement is by comparing ∆ and the
average degree. The results can be found in Figure 6 and
Figure 7. As the scale increases, our new algorithm performs
progressively better. Furthermore, as the degree increases and
the scale remains the same, our algorithm improves, showing
the asymptotic improvement with degree. With Kronecker
graphs our improvement is slower than with Erdős-Rényi as
the degree distribution is skewed.

VII. CONCLUSION

Graphs are crucial data structures that represent varied data
such as biological systems, road maps, and social networks.
The analysis of graphs play an increasing role in understanding
and reasoning about such data. One fundamental analytic is
the number of common neighbors between vertices. This has
a wide range of applications, including predicting potential
links, uncovering topological modules, and detecting com-
munities. A significant amount of attention has been paid
to evaluating the effectiveness of common neighbors, but
little attention on computationally scaling common neighbor
counting from small graphs to the massive graphs seen today.
Until now, there have been no practical solutions for these
classes of analytics in shared-memory graph workflows. We
identify that set intersections are unnecessary and the process
of determining which vertices to consider already produces the
common neighbor count outputs.

In our work, we propose a new algorithm that is both
asymptotically faster than set intersection methods and paral-
lelizable, unlike prior approaches, and we anticipate effectively
extending to top-k applications for multiple indices on massive
scale graphs in future work. We implement our algorithm using
OpenMP and demonstrate its performance and scalability. We
show that set intersections add an unnecessary asymptotic
factor when computing all pair common neighbor counts.

REFERENCES

[1] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American society for information
science and technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[2] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph summarization with
bounded error,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. ACM, 2008, pp. 419–432.

[3] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-
L. Barabási, “Hierarchical organization of modularity in metabolic
networks,” Science, vol. 297, no. 5586, pp. 1551–1555, 2002.

[4] E. A. Leicht, P. Holme, and M. E. Newman, “Vertex similarity in
networks,” Physical Review E, vol. 73, no. 2, p. 026120, 2006.

[5] P. Jaccard, “Nouvelles recherches sur la distribution florale,” Bull. Soc.
Vaud. Sci. Nat., vol. 44, pp. 223–270, 1908.

[6] T. Zhou, L. Lü, and Y.-C. Zhang, “Predicting missing links via local
information,” The European Physical Journal B, vol. 71, no. 4, 2009.

[7] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
networks, vol. 25, no. 3, pp. 211–230, 2003.

[8] G. Salton, “Automatic text processing: The transformation, analysis, and
retrieval of,” Reading: Addison-Wesley, 1989.

[9] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song et al., “Static graph
challenge: Subgraph isomorphism,” in IEEE High Performance Extreme
Computing Conference (HPEC), 2017.

[10] G. P. Krawezik, P. M. Kogge, T. J. Dysart, S. K. Kuntz, and J. O. McMa-
hon, “Implementing the jaccard index on the migratory memory-side
processing emu architecture,” IEEE Proc. High Performance Extreme
Computing (HPEC), 2018.

[11] V. Martı́nez, F. Berzal, and J.-C. Cubero, “A survey of link prediction
in complex networks,” ACM Computing Surveys (CSUR), vol. 49, no. 4,
p. 69, 2017.

[12] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software (TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[13] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[14] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[15] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5, pp.
1–9, 2006.

[16] https://sparkling-graph.github.io/, accessed: 2019-01-22.
[17] J. Webber and I. Robinson, A programmatic introduction to neo4j.

Addison-Wesley Professional, 2018.
[18] H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu, “Scalable

proximity estimation and link prediction in online social networks,”
in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement. ACM, 2009, pp. 322–335.

[19] R. B. Zadeh and G. Carlsson, “Dimension independent matrix square
using mapreduce,” arXiv preprint arXiv:1304.1467, 2013.

[20] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[21] D. Garcia Gasulla, “Link prediction in large directed graphs,” 2015.
[22] D. Buono, F. Petrini, F. Checconi, X. Liu, X. Que, C. Long, and T.-C.

Tuan, “Optimizing sparse matrix-vector multiplication for large-scale
data analytics,” in Proceedings of the 2016 International Conference on
Supercomputing. ACM, 2016, p. 37.

[23] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J. Anderson,
S. G. Vadlamudi, D. Das, S. G. Pudov, V. O. Pirogov, and P. Dubey,
“Parallel efficient sparse matrix-matrix multiplication on multicore plat-
forms,” in International Conference on High Performance Computing.
Springer, 2015, pp. 48–57.

[24] K. Rupp, F. Rudolf, and J. Weinbub, “Viennacl-a high level linear
algebra library for gpus and multi-core cpus,” in Intl. Workshop on GPUs
and Scientific Applications, 2010, pp. 51–56.

[25] A. Azad, G. Ballard, A. Buluc, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016.

[26] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” The International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[27] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014.

[28] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel® Xeon Phi(tm). Springer, 2014, pp. 167–188.

[29] G. Ballard, T. G. Kolda, A. Pinar, and C. Seshadhri, “Diamond sam-
pling for approximate maximum all-pairs dot-product (mad) search,” in
International Conference on Data Mining. IEEE, 2015, pp. 11–20.

[30] https://stackoverflow.com/questions/50739165/
link-prediction-for-big-graphs, accessed: 2019-01-31.

[31] https://cstheory.stackexchange.com/questions/16404/
finding-two-vertices-with-the-most-least-common-neighbors, accessed:
2019-02-01.

[32] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, vol. 17, no. 3, pp. 209–223, 1997.

[33] T. Schank and D. Wagner, “Finding, Counting and Listing All Triangles
in Large Graphs, an Experimental Study,” in Experimental & Efficient
Algorithms. Springer, 2005, pp. 606–609.

[34] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theoretical computer science, vol. 407, no. 1-3,
pp. 458–473, 2008.

[35] H. C. Sungpack Hong, Martin Sevenich, “Finding common neighbors
between two nodes in a graph,” US Patent 0 178 405.

[36] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Rajaman-
ickam, “Fast linear algebra-based triangle counting with kokkoskernels,”
in High Performance Extreme Computing Conference (HPEC), 2017
IEEE. IEEE, 2017, pp. 1–7.

[37] M. Bisson and M. Fatica, “High performance exact triangle counting on
gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 12, pp. 3501–3510, 2017.

[38] O. Green, P. Yalamanchili, and L. Munguı́a, “Fast Triangle Counting
on the GPU,” in IEEE Fourth Workshop on Irregular Applications:
Architectures and Algorithms, 2014, pp. 1–8.

[39] O. Green, J. Fox, A. Watkins, A. Tripathy, K. Gabert, E. Kim, X. An,
K. Aatish, and D. A. Bader, “Logarithmic radix binning and vectorized
triangle counting,” IEEE Proc. High Performance Extreme Computing
(HPEC), 2018.

[40] J. Fox, O. Green, K. Gabert, X. An, and D. A. Bader, “Fast and adaptive
list intersections on the gpu,” IEEE Proc. High Performance Extreme
Computing (HPEC), 2018.

[41] P. Sarkar, D. Chakrabarti, and A. W. Moore, “Theoretical justification of
popular link prediction heuristics.” in IJCAI proceedings-international
joint conference on artificial intelligence, vol. 22, no. 3, 2011, p. 2722.

[42] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing by
graph ordering,” in Proceedings of the 2016 International Conference
on Management of Data. ACM, 2016, pp. 1813–1828.

[43] Y. Pan, D.-H. Li, J.-G. Liu, and J.-Z. Liang, “Detecting community
structure in complex networks via node similarity,” Physica A: Statistical
Mechanics and its Applications, vol. 389, no. 14, pp. 2849–2857, 2010.

[44] A. Hagberg, D. Schult, P. Swart, D. Conway, L. Séguin-Charbonneau,
C. Ellison, B. Edwards, and J. Torrents, “Networkx. high productivity
software for complex networks,” Webová strá nka https://networkx. lanl.
gov/wiki, 2013.

[45] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM Journal on Computing, vol. 14, no. 1, pp. 210–223, 1985.

[46] J. Cohen, “Graph twiddling in a mapreduce world,” Computing in
Science & Engineering, vol. 11, no. 4, pp. 29–41, 2009.

[47] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, “Graph
partitioning and graph clustering,” in 10th DIMACS Implementation
Challenge Workshop, 2012.

[48] M. Deveci, C. Trott, and S. Rajamanickam, “Performance-portable
sparse matrix-matrix multiplication for many-core architectures,” in
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2017, pp. 693–702.

[49] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” Journal
of Machine Learning Research, vol. 11, no. Feb, pp. 985–1042, 2010.

[50] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray User’s Group (CUG), vol. 19, pp. 45–74, 2010.

