
FINDING DENSE REGIONS OF RAPIDLY CHANGING GRAPHS

A Dissertation
Presented to

The Academic Faculty

By

Kasimir Georg Gabert

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

May 2022

© Kasimir Georg Gabert 2022

FINDING DENSE REGIONS OF RAPIDLY CHANGING GRAPHS

Thesis committee:

Dr. Ümit V. Çatalyürek
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. B. Aditya Prakash
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Srijan Kumar
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Srinivas Aluru
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Ali Pınar
Department of Data Science and Cyber
Analytics
Sandia National Laboratories

Date approved: April 21, 2022

For my family

ACKNOWLEDGMENTS

In no way would this work be possible with the tremendous support, encouragement,

and direct help I have received over the years. I am extremely grateful to my advisor, Dr.

Ümit V. Çatalyürek. Without his guidance, suggestions, ideas, and sincere support, this

work would not have been possible. I am deeply thankful to Dr. Ali Pınar. I appreciate

our numerous inspiring discussions that played a major role in my dissertation, and the

helpful and important connections back to my Sandia work. I am thankful to the rest of my

committee, Dr. Srinivas Aluru, Dr. Srijan Kumar, and Dr. B. Aditya Prakash, for improving

my work through careful reading, helpful discussions, and suggestions.

This journey would not have started without the mentorship and encouragement of

Tan Thai. I am deeply grateful for all you have done for my career and growth—much

more than can be written in the words here. I thank Dylan Anderson, Dr. Stephen Todd

Jones, Dr. Nick Pattengale, Dr. Laura Swiler, and Tom Tarman for the continual support,

encouragement, and friendship at work during my studies. I am thankful to my managers

Kim Denton-Hill, Cindy Veitch, Dr. Jennifer Troup, and Dr. Brandon Eames, who have

all directly enabled my joint work and studies. I am thankful to Dr. Gayle Thayer for the

tremendous help in allowing me to submit by conference deadlines.

I could not have gone through this without the support of my friends. I can’t thank you

all enough: Keegan Florence-Livoti, for many years of adventures and discussions; Srinivas

Eswar for helping me get out and climb (among other adventures!); Dr. Abdurrahman

Yaşar, for wonderful encouragement and discussions on all fronts; Dr. Nolen Scaife, for

continuous support from when we both started; Bryan Kennedy, for a fantastic supply of

interesting news updates (and discussions!); and Dr. Zhihao Li, for teaching me so much

about how to capture light, a welcome break from studying. Matt, Mary, and Dennis:

I cannot thank you enough for your support. I am thankful for all of the discussions,

thoughts, and kindness from everyone in the TDA Lab, James Fox, Yusuf Ozkaya, M.

iv

Fatih Balin, Kaan Sancak, and Ben Cobb, and the larger CSE program. I am thankful to

Dr. David Bader and Dr. Oded Green for their early support, and all of my lab members.

My family has supported me the whole way, and I wouldn’t be here without them. I am

grateful to my parents, for their constant support; to my brothers, for keeping me in line; to

my extended family, for being there for me; and to Jing, for everything.

Lastly, I am thankful for the parks, open spaces, and wild areas that allowed me to

recharge and think more clearly.

This work was funded in part by the U.S. Department of Energy National Nuclear

Security Administration’s Office of Defense Nuclear Nonproliferation Research and De-

velopment (NA-22), the Doctoral Study Program at Sandia National Laboratories, and the

Laboratory Directed Research and Development program at Sandia National Laboratories.

Sandia National Laboratories is a multimission laboratory managed and operated by Na-

tional Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary

of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear

Security Administration under contract DE-NA0003525.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xiv

List of Figures . xv

Summary . xx

Chapter 1: Introduction . 1

1.1 Thesis Statement and Research Overview 7

Chapter 2: Preliminaries and Notations . 13

2.1 Graphs and Graph Extensions . 13

2.2 Graph Properties . 14

2.3 Dynamic Graphs . 15

2.4 Dynamic Graph Algorithms . 16

2.5 Dense Regions of Graphs . 18

2.5.1 Definitions of Density . 18

2.5.2 Cores, Trusses, and Nuclei . 18

2.5.3 Static Computation . 21

2.5.4 Hypergraph Cores . 22

vi

2.5.5 Maintenance Approaches . 23

2.6 Large-Scale Dynamic Graph Systems . 24

2.6.1 Dynamic and Partially Dynamic Graph Systems 25

2.6.2 Dataflow Systems . 27

2.7 Temporal Dense Regions . 27

2.7.1 Edge Density . 28

2.7.2 Density as Average Degree . 29

2.7.3 Other Density Notions and Related Approaches 30

2.7.4 Dense Regions and Community Detection 30

Chapter 3: Unifying Dense Regions Through Hypergraph Cores 33

3.1 Computational Complexity of Updates . 36

3.2 Nuclei and Hypercores . 39

3.3 Maintaining Nucleus Decompositions . 41

3.3.1 Maintaining 𝐻 on a Changing Graph 42

3.3.2 Computing 𝜅 . 43

3.4 Experiments and Results . 44

3.4.1 Experiments . 44

3.4.2 Experimental Results . 51

3.4.3 Related Work and Future Directions 52

3.5 Summary . 53

Chapter 4: From Coreness to Cores . 54

4.1 Related Work . 57

vii

4.2 Preliminaries . 58

4.2.1 Dynamic Graph Model . 59

4.2.2 Cores . 59

4.2.3 Problem Statement . 60

4.3 Shell Tree Index . 61

4.3.1 Naive Index . 61

4.3.2 Compressed Naive Index . 63

4.3.3 Shell Tree Index . 64

4.3.4 Queries on ST-Index . 66

4.3.5 Efficiency of ST-Index . 66

4.4 Computing the ST-Index . 67

4.4.1 Computing Coreness Values . 68

4.4.2 Computing the Subcore DAG . 68

4.4.3 Building the Shell Tree . 70

4.5 Maintaining the ST-Index . 71

4.5.1 Maintaining Coreness . 72

4.5.2 Single Edge Maintenance Algorithm 73

4.5.3 Batch Maintenance . 74

4.6 Empirical Analysis . 78

4.6.1 Environment . 78

4.6.2 Baseline . 78

4.6.3 Datasets . 79

4.6.4 Experiments . 82

viii

4.7 Summary . 83

Chapter 5: Temporal Dense Regions with Core Chains 84

5.1 Introduction . 84

5.2 Preliminaries and Related Work . 88

5.2.1 Preliminaries . 88

5.2.2 Related Work . 91

5.3 Core Chain Definition . 93

5.3.1 𝑘-Seeded Core Chains . 98

5.3.2 𝑘-Majority Core Chains . 98

5.4 Computing Core Chains . 99

5.4.1 Shell Temporal Hierarchy . 100

5.4.2 Computing shell−D . 102

5.4.3 Nuclei Hierarchies for Vertices . 102

5.4.4 Computing 𝑘-seeded core chains 103

5.4.5 Computing 𝑘-majority core chains 104

5.5 Evaluation . 106

5.5.1 Identifying Research Groups . 106

5.5.2 Bitcoin Trust Network . 112

5.5.3 Tracking Ant Behavior . 115

5.6 Summary . 121

Chapter 6: Loading and Saving Massive Graphs 122

6.1 PIGO I/O Library . 124

ix

6.1.1 Requirements . 124

6.1.2 Overview . 126

6.1.3 Application Programming Interface 126

6.1.4 Example Programs . 127

6.1.5 Algorithm Details . 128

6.2 Experiments and Results . 130

6.3 Summary . 132

Chapter 7: Scaling Up: Maintaining Cores in Parallel 133

7.1 Background . 135

7.1.1 Notation . 135

7.1.2 Dynamic Hypergraphs . 136

7.1.3 Hypergraph 𝑘-Cores to Address Pandemics 136

7.2 Static ℎ-index Algorithms . 138

7.2.1 ℎ-index Coreness Computation . 138

7.2.2 Key Problem: How To Reinitialize 139

7.2.3 Extension To Hypergraphs . 140

7.3 ℎ-Index Based Core Maintenance . 141

7.3.1 Re-initialization Based Algorithms 143

7.3.2 Processing in Parallel with Pin Changes 145

7.3.3 Mixing Initialization and Convergence 146

7.4 Experiments and Results . 149

7.4.1 Datasets . 149

x

7.4.2 Insertion Scalability . 150

7.4.3 Deletion Scalability . 155

7.4.4 Mixed Insertions and Deletions . 155

7.5 Summary . 155

Chapter 8: Distributed Fast ℎ-Index Computation 157

8.1 Introduction . 157

8.2 Background and Prior Approaches . 159

8.2.1 Bucket-Based Computation . 159

8.3 DHIndex . 160

8.3.1 Overview . 160

8.3.2 Choosing a Pivot . 162

8.3.3 Parallelizing DHIndex . 163

8.4 Implementation and Evaluation . 164

8.5 Summary . 165

Chapter 9: Scaling Out: Elastic and Distributed Computation 166

9.0.1 Design Goals . 167

9.0.2 Contribution . 168

9.1 Background and Related Work . 169

9.1.1 Vertex-Centric Models . 169

9.1.2 Distributed Graph Systems . 169

9.1.3 Achieving Elasticity in Clouds . 173

9.1.4 Sketches . 173

xi

9.2 ElGA . 174

9.2.1 System Overview . 175

9.2.2 ElGA Core – Programming Model 176

9.2.3 Directory System . 178

9.2.4 Agents . 179

9.2.5 Communication . 182

9.3 Experiments . 183

9.3.1 Experimental Environment . 183

9.3.2 State-of-the-art Baselines . 184

9.3.3 Static and Dynamic Algorithms 185

9.3.4 Datasets . 186

9.3.5 Design Choices . 187

9.3.6 Scalability . 190

9.3.7 Comparison with Static State-of-the-art 194

9.3.8 Comparison with Single Node Systems 195

9.3.9 Dynamic Behavior and Elasticity 195

9.4 Temporal Support in ElGA . 199

9.5 ElGA’s Programming Interface . 200

9.5.1 Algorithm Structure . 200

9.5.2 Vertex-Centric Function and Examples 201

9.5.3 Lightweight BSP and the Full Model 203

9.6 Summary . 203

xii

Chapter 10: Conclusion and Future Directions 205

10.1 Conclusion . 205

10.2 Future Directions . 207

References . 209

xiii

LIST OF TABLES

3.1 Graphs used for nuclei maintenance experiments 44

3.2 Edges before reaching the static runtime. 45

4.1 Graphs used with 𝑛, 𝑚 in millions. 79

7.1 Graphs used for our experiments. 150

7.2 Hypergraphs used for our experiments. 150

9.1 Dynamic and elastic properties of graph systems. 171

9.2 The graphs used in our experiments. 186

xiv

LIST OF FIGURES

1.1 The core of C. elegans . 2

1.2 An example graph and its 𝑘-cores . 3

1.3 Hierarhical regions of Gnutella . 4

1.4 Increasingly dense regions of web-Google 5

1.5 A dense hierarchy of the facebook graph over time 6

2.1 Coreness and Trussness . 19

2.2 A (2, 4) nucleus . 20

2.3 An example hypergraph and its cores. 23

2.4 Community detection instability on larger graphs 31

3.1 The graph used for proving nucleus maintenance complexity 37

3.2 Vertex overlapping tool . 38

3.3 (2, 3)- and (3, 4)-hypergraphs . 40

3.4 Insertion latency over time . 46

3.5 Statistics of the insertion latency . 46

3.6 Distributions of insertions . 47

3.7 Memory use for nucleus maintenance . 49

3.8 Overhead from using a virtual hypergraph 49

xv

3.9 Division of time between maintaining cores and hypergraphs 50

3.10 Comparison with truss-specific implementations 50

4.1 Core hierarchy for LiveJournal . 55

4.2 An example graph and its cores . 60

4.3 A naive index for return cores . 62

4.4 An improved naived index for return cores 64

4.5 The shell tree . 65

4.6 Cores and subcores of a graph . 67

4.7 Subcore DAG and shell tree example . 68

4.8 Incremental maintenance of the shell tree 74

4.9 An example graph before and after insertions 75

4.10 Edge-by-edge approach compared to the batch approach 77

4.11 ST-Index construction time . 80

4.12 Runtime for C queries . 80

4.13 Runtime forH queries . 80

4.14 The performance results of Batch, SingleEdge, and FromScratch 81

5.1 Vertex-focused limitations . 85

5.2 Graph density hierarchy . 94

5.3 Density hierarchies over time . 95

5.4 Temporal hierarchy movement . 97

5.5 A core chain in a temporal hierarchy . 97

5.6 An example shell−D . 101

xvi

5.7 (3, 4)-nuclei chains of research groups . 107

5.8 (1, 2)-nuclei chains of research groups . 108

5.9 Research groups identified with span-cores 109

5.10 Research groups identified with DLCP . 110

5.11 Research groups identified with MBC . 111

5.12 (3, 4)-nuclei core chains in trust networks 113

5.13 Span-cores in trust networks . 114

5.14 (2, 4)-nuclei chains identifying nurse ants 116

5.15 Span-cores identifying nurse ants . 117

5.16 𝐹1-score of ants dataset . 118

5.17 Specificity of ants dataset . 119

5.18 (2, 5)-nuclei chains identifying nurse ants 120

6.1 ASCII and binary file read times . 123

6.2 PIGO’s position in graph systems . 125

6.3 The high-level API for PIGO. 127

6.4 An example program using PIGO with default template values. 127

6.5 Modifications for Ligra to use PIGO . 128

6.6 An example reading an AL in PIGO. 129

6.7 Binary read times in parallel . 130

6.8 Read times between PIGO and baselines 131

6.9 PIGO’s scalability . 131

7.1 Example co-occurence hypergraph . 137

xvii

7.2 Incrementing based on hyperedge changes 146

7.3 An example graph increasing with a clique 148

7.4 mod’s scalability for insertions . 151

7.5 setmb’s scalability with insertions . 152

7.6 Insertion-only pin batches with mod. 152

7.7 Deletion-only edge batches with mod. 153

7.8 Deletion-only edge batches with setmb. 153

7.9 Deletion-only pin batches with mod. 154

7.10 Mixed batches with mod. 154

8.1 Time spent computing ℎ-indices for 𝑘-cores 158

8.2 Evaluating sequential performance . 164

8.3 Scaling on shared-memory . 165

8.4 Scaling on distributed-memory . 165

9.1 An overview of the components of ElGA. 175

9.2 Agents messaging patterns . 177

9.3 Consistent hashing strategy . 180

9.4 Runtime while scaling with A-BTER . 187

9.5 Hash functions impact on runtime . 188

9.6 Load balance by virtual agents . 189

9.7 Runtime cost of resolving edges . 190

9.8 Strong scaling nodes computing PageRank 191

9.9 Strong scaling agents computing PageRank 191

xviii

9.10 Weak scaling of Pokec . 192

9.11 ElGA’s PageRank runtimes . 193

9.12 ElGA’s WCC runtimes . 193

9.13 Comparing ElGA and STINGER for WCC 195

9.14 Insertion rate into ElGA . 196

9.15 Maintaining connectivity . 196

9.16 Cost of adding and removing an Agent . 198

9.17 ElGA manually scaling . 198

9.18 ElGA autoscaling . 199

9.19 Weakly connected components in ElGA 201

9.20 Breadth first search in ElGA . 202

xix

SUMMARY

Many of today’s massive and rapidly changing graphs contain internal structure—

hierarchies of locally dense regions—and finding and tracking this structure is key to de-

tecting emerging behavior, exposing internal activity, summarizing for downstream tasks,

identifying important regions, and more. Existing techniques to track these regions funda-

mentally cannot handle the scale, rate of change, and temporal nature of today’s graphs. We

identify the crucial missing piece as the need to address the significant variability in graph

change rates, algorithm runtimes, temporal behavior, and dense structures themselves.

We tackle tracking dense regions in three parts. First, we extend algorithms and the-

ory around dense region computation. We computationally unify nuclei into computing

hypergraph cores, providing significant improvements over hand-tuned nuclei algorithms

and enabling higher-order nuclei. We develop new batch algorithms for maintaining core

hierarchies. We then define new temporal dense regions, called core chains, that build on

nuclei hierarchy maintenance and enable effective and powerful dense region tracking.

Second, we scale up on shared-memory systems. We provide a parallel input and output

library that reduces start-up costs of all known graph systems. We provide the first parallel

scalable core and hypergraph core maintenance algorithms, building on the connection be-

tween ℎ-indices and cores. This addresses computation on rapidly changing graphs during

bursty periods with large numbers of graph changes.

Third, we address scaling out to support massive graphs. We develop the first parallel

ℎ-index algorithm, the key kernel for tracking dense regions. We identify that system elas-

ticity is imperative to handle large bursts of changes. We develop a dynamic and elastic

graph system, using consistent hashing and sketches, and demonstrate competitive perfor-

mance against static, inelastic graph systems while enabling new, dynamic applications.

By addressing variability directly—in algorithm and system design—we break through

previous barriers and bring dense region tracking to massive, rapidly changing graphs.

xx

CHAPTER 1

INTRODUCTION

Today’s datasets are both massive and continuously growing. Numerous interactions can

be recorded and stored by computer systems, such as computer network activity, social

behavior, transportation events, biological and chemical processes, and many more. There

is a large promise to this data: if we can understand what is happening inside of a system

quickly, we can act to make positive change. In many cases, data includes internal relation-

ships, and for those graph representations have proven powerful. Graphs are a powerful

intermediate format: once data is put into a graph form, many domain agnostic graph algo-

rithms can be effectively applied to reason about and understand the data.

Many of the large graphs today are continuously changing as natural processes and

interactions progress in time. A graph representing websites and links between them, for

example, changes as websites publish updates. Graphs representing social connections

between people change as people change, and graphs representing computer traffic change

when packets are sent. Between graphs, the rate of change can vary significantly. Some

graphs may have only a handful of changes per year, for example academic coauthor graphs

at a small institution, whereas others may have hundreds per microsecond, for example

with network traffic graphs. Depending on the graph, the rate of change itself can be highly

variable with bursty periods followed by relative calm.

It is easy to turn many real-world, massive data streams into graphs. The problem

arises with understanding and using a resulting graph. As it rapidly changes, there is

inherent error or staleness in parts of the graph that may impact algorithms’ usefulness.

When the graphs are massive, running an efficient, optimized algorithm from scratch may

take minutes or even hours. If the graph is changing thousands of times per second dur-

ing a bursty period, then even such an optimized static algorithm will not be able to run

1

Figure 1.1: The dense core, shown in blue, of a neural network of C. elegans, a small
worm. This dense region has been shown to contain important neurons for C. elegans’
behavior. Many real-world graphs are globally sparse but contain locally dense regions.

quickly enough to return results before the graph has undergone significant, further change.

This dissertation centers around taking a powerful, long standing technique to reason about

static graphs—finding dense regions—and developing the theory, algorithms, and systems

to enable this technique on massive, rapidly changing graphs, ultimately enabling deeper

understanding and more effective use of these graphs.

Finding locally dense regions is a fundamental graph mining problem [155]. At a high

level, dense regions expose parts of a graph that, by their nature, are robust against minor

perturbation or error and due to their high internal connectivity may be more important

than other regions. A surprising but important property of many real-world graphs is that

while they are globally sparse they contain locally dense regions [260]. This means that

finding dense regions can assist in graph summarization and identifying internal structure

of graphs. In Figure 1.1, we show a dense region of the neural network of C. elegans [260],

a small worm. Such dense regions have been shown to consist of neurons that are important

in the behavior and central processing of the worm, whereas neurons in sparse regions make

up peripheral and less critical parts of its brain [44, 253].

2

3

3 3

3

1

1

1

1

2

2

2

2
2

2

2

2

2

1
3-core 2-core

2-core

1-core

1-core

Figure 1.2: An example graph along with its 𝑘-cores.

Dense regions have been used for tasks including deriving news stories from blogs [13],

finding communities in websites [148, 64], identifying link spam websites [103], uncover-

ing motifs in DNA [88], performing graph visualization [10], optimizing computation [132],

and many more [147, 9, 109, 251, 99, 85, 144].

Graphs that change over time are known as dynamic graphs, and they are referred to as

temporal graphs if the history of the graph is saved and used. In this dissertation, we focus

on the important problem of dense region maintenance on dynamic graphs and on find-

ing temporal dense regions, by considering both historic and current information about the

graph. We maintain decompositions and hierarchies through dynamic graph algorithms,

find temporal dense regions with temporal graph algorithms, and we call static graph al-

gorithms those which perform computation on an unchanging, immutable graph.

Finding the densest regions of a graph, those which are fully connected, is a classic

NP-hard problem [138], and even finding less restrictive regions but those with explicit

high density ratios are NP-hard problems and difficult to approximate [202, 227, 193, 39,

52, 220]. As a result, most dense region work has shifted towards cores [228, 183] or core-

like regions [122, 50, 223, 264, 171, 28, 170, 272, 71, 271, 96]. A 𝑘-core is a maximal

connected subgraph where every vertex has an degree at least 𝑘 , and this degree constraint

exists even when only the subgraph is present. In Figure 1.2 we show an example graph

along with its 𝑘-cores. The graph is disconnected, and so has two 1-cores. Even vertices

3

(a) The Gnutella graph. Colors correspond to four of its cores.

1-core

5-core

10-
core

6-core

(b) The core hierarchy.

Figure 1.3: The hierarchical and dense regions of a snapshot of Gnutella, a peer-to-
peer network. Only 4 cores are shown for clarity. Cores are nested: each vertex with 𝑘
neighbors also has (𝑘 − 1) neighbors, and so each 𝑘-core is also in a (𝑘 − 1)-core. The
sharp boundary between the 5-core and 6-core illuminate part of the peer-to-peer protocol
with a corresponding gap between peers and “ultrapeers”.

with a high degree may only be in a low core. The vertex has to both have a high degree

and be in a cohesive region where enough neighbors also have high degrees. Cores can be

computed in linear time efficiently [183] and, crucially, core decompositions can be main-

tained on medium sized, moderately rapidly changing graphs [274, 224]. Unfortunately,

prior maintenance algorithms neither scale to rapidly changing graphs nor readily extend

to more powerful dense regions.

In many cases, the dense regions are hierarchical: a very dense region may sit inside of

a slightly less dense region, and so on [155]. In Figure 1.3 we show this holds for a peer-

to-peer network, Gnutella [213]. Up until the 5-core the vertices are spread out uniformly,

as shown in the visualization. The 6-core is a sharply smaller, more localized region. The

following denser cores, up to the 10-core, are close to the 6-core. This hierarchical structure

shows Gnutella’s split between regular peers and “ultrapeers” [142].

4

(a) Core Hierarchy (b) Nucleus Hierarchy

Figure 1.4: Extracting two hierarchies from the web-Google graph. Leaf nodes are
removed and paths compressed for clarity. Each circle corresponds to a core or nucleus, and
circles sitting inside correspond to nested cores or nuclei. Disjoint circles are disconnected
cores or nuclei. Darker color indicates higher 𝑘 values. In (a), a single funnel appears
where there is one densest region. In (b), a rich hierarchy exists that, in many graphs, tends
to reflect the nature of the graph. Cores are computable in linear time, but nuclei are denser,
more cohesive and hence more useful.

Cores have received a significant amount of attention; however, on many graphs they

fail to capture useful hierarchies [223]. In many cases they return a single “funnel”, with

one densest core and overlapping larger and larger cores out of it. Nuclei [223] general-

ize cores by replacing the degree requirement with a clique-degree requirement, where a

𝑘-clique is the complete graph on 𝑘 vertices. As we discuss later, nuclei are parameter-

ized by two integers, and for the examples here we choose the parameters (3, 4). With

nuclei, dense regions have stronger and tighter connections. In Figure 1.4, we show the

web-Google [107] graph, the core hierarchy, and the nucleus hierarchy. When moving

from cores to nuclei, the regions become denser and more cohesive. The resulting hierar-

chies become richer and ultimately provide more insight into the graph.

Extracting dense regions have proven highly useful on static graphs. However, only lim-

ited forms of dense region maintenance—specifically for cores [225, 274] and trusses [122,

5

(a) 20% (b) 40% (c) 60% (d) 80%

Figure 1.5: The nucleus hierarchy of facebook at various points in time, given in per-
centages of the edge stream. Dense regions can show temporal changes motivating the need
to compute dense regions at various points in time on temporal graphs.

273], an extension of cores—have been developed, and those approaches do not scale [121].

There is a significant need for scalable and effective techniques to maintain cores and other

dense regions on today’s massive, rapidly changing graphs.

Furthermore, the hierarchies of graphs and the dense regions change over time, and

tracking these changes has the potential to yield significant insight. In Figure 1.5 we show

a dense hierarchy of the facebook temporal graph. There have been several approaches

that study temporal cores, however prior approaches produce brittle core structures that do

not fully consider the temporal nature [18, 165, 123, 97, 206, 208, 167, 166, 173, 216].

Instead, we need new definitions that capture the temporal nature of cores themselves.

Unfortunately, simply engineering prior maintenance algorithms to handle larger scales

does not work. There are several major problems: first, core maintenance algorithms are

complex and porting them to other core-like dense regions is both error prone and pro-

hibitively expensive, and prior temporal approaches fail to capture important structure;

second, we prove any nucleus maintenance algorithm necessarily has worst-case runtimes

that match a static computation, so with massive graphs runtime variability must be ad-

dressed throughout algorithm design; third, prior maintenance algorithms are either not

parallel or not scalable. In this dissertation we introduce new algorithms and systems that

address these problems and provide effective dense subgraph extraction on massive, rapidly

changing graphs.

6

1.1 Thesis Statement and Research Overview

There are two recurring themes addressed throughout this dissertation.

1. There is significant runtime variability in dynamic graph algorithms, both due to

variability in the rate of change of the graph and theoretically necessary variability

in computation, even when the output does not change at all.

2. As graphs change, there is variability in the dense regions themselves. This variability

can be harnessed to provide further, temporal insight about graphs.

We argue that by handling variability explicitly throughout both algorithm and system de-

sign, hierarchies of dense regions can be maintained on massive, rapidly changing graphs.

We address the gap in three parts: extending and unifying notions of density to enable

effective and more powerful computation; scaling up shared-memory algorithms and sys-

tems; and scaling out to distributed systems to support massive, rapidly changing graphs.

Part 1: Extending and Unifying Dense Regions. First, we extend and unify notions of

dense regions of graphs. Without this work, the power and ability to use dense regions is

significantly reduced.

In Chapter 3 [90], we address the problem of dynamically maintaining nuclei. Com-

puting nuclei involves counting and enumerating (small) cliques, where the clique size is

a parameter. In many cases, larger cliques result in higher computational costs yet, at the

same time, provide richer and more useful hierarchies. As such, computing nuclei can be

a major undertaking: the cost can be prohibitively high if the graph contains large cliques

and undergoes continuous change, with a high cost incurred on every update. These costs

result in a pressing need for maintenance algorithms.

Our first result is somewhat negative: we prove that in the worst case maintaining

nuclei, even on a single edge update with no changing output, cannot asymptotically beat

7

re-computing from scratch. This motivates studying the empirical runtime of maintenance

algorithms and shows that long tails and high variability need to be addressed.

Prior to our work, there were no known approaches for maintaining general nuclei.

Specialized algorithms have been developed for two common nuclei, (1, 2) and (2, 3).

However, each specialization is involved with no clear path to higher-order nuclei.

We developed a simplified way of thinking about nuclei: instead of by their original

definition, we view all nuclei as (1, 2)-nuclei, or cores, in a special hypergraph. This

result immediately simplifies both nuclei descriptions and computational approaches. To

maintain nuclei, we can now use hypergraph core maintenance algorithms. Using order-

based methods, we developed a new hypergraph core maintenance algorithm that is exact

and orders of magnitude faster than prior approximate-only methods, resulting in 7 orders

of magnitude improvement over re-computing nuclei from scratch. Furthermore, not only

do we maintain higher-order, arbitrary nuclei, but our implementations work faster than

specialized truss algorithms—over 93× faster. We expect that, through our framework,

as faster core maintenance algorithms are developed they will be amenable for computing

arbitrary nuclei, bringing performance improvements with them.

In Chapter 4, we focus on a critical but largely overlooked issue: all prior maintenance

algorithms have maintained the density levels for vertices, but have ignored returning the

set of vertices in a dense region. This oversight means that prior maintenance algorithms

cannot be used for most downstream applications, as they require the actual vertices, and

this severely limits the applicability and usefulness of finding dense regions in graphs.

To address this, we use a query-efficient shell tree index from community search that

can maintain connectivity and hence the sets of vertices. Our approach not only applies to

graph cores, but also to hypergraph cores, and so we are able to return the dense regions

for nuclei. Differing from community search results, we use an intermediate data structure.

We build and maintain a directed acyclic graph where each node represents a connected

region of the graph with identical density values. This directed acyclic graph is then used

8

to create the shell tree index, allowing for batches with concurrent insertions and deletions

and work savings over a direct application of the community search results.

In Chapter 5, we move beyond only looking at maintenance algorithms and focus on

temporal dense regions. These are regions that take advantage of the temporal nature of the

graph: instead of trying to simply maintain the dense region, computing updates as quickly

as possible, the goal is to understand how a dense region, and ultimately the graph, evolves

over time. Can we follow a dense region from cradle to grave?

While there has been a recent large surge in interest in solving this problem [18, 165,

123, 97, 206, 208, 167, 166, 173, 216], we demonstrate that all of the known prior ap-

proaches suffer from a particularly deep-rooted issue. They start with a static graph def-

inition of a dense region, for example a core is defined as a maximal subgraph with a

minimum degree at least 𝑘 , and then look for time intervals for which any such subgraph

exists. Some approaches look for rapid bursts that create the subgraph, others for periodic

behavior, diversified subgraphs and vertices, and yet others for longest living subgraphs.

Unfortunately, all of these approaches cannot handle subgraphs that themselves change

over time. Critically, dense regions themselves can outlive vertices and edges.

To address this problem, we define core chains as a path through different density hier-

archies over time. We treat such a path itself as a dense region and the goal is to compute

useful paths. We develop two core chains that work with core and nuclei hierarchies: one

which focuses on a seed set of vertices and the other which focuses on the majority of

vertex movements from timestep to timestep. Unlike prior approaches, we show that core

chains are able to identify dense regions that change over time. In a co-author graph, we

show that nuclei-based core chains are able to identify research groups and can even distin-

guish between two closely related research groups. In a dataset collected from observing

ants, we show that core chains are able to successfully identify ant behavior and can even

assist in identifying what roles ants play in the colony. In both cases, prior temporal core

approaches cannot extract any useful regions.

9

Part 2: Scaling Up. As datasets become large, single threaded approaches are no longer

sufficient. Second, we address scaling up in shared-memory environments.

In Chapter 6 [89], we address the first problem that many graph systems, including

our dense region work, face when scaling up: input and output. Prior to our work, the

few available input and output libraries were single threaded and generally slow. However,

modern architectures support parallel input and output, and furthermore slow data parsing

tends to become a serious bottleneck. For graphs with tens of billions of vertices, input can

take upwards of an hour, whereas kernel runtimes then complete in seconds.

We developed an open-source library, PIGO, which reads graph and tensor data, both in

ASCII and in binary formats, in parallel. When handling ASCII files, it makes two passes:

in the first pass, offsets are computed in parallel and memory is allocated; in the second

pass, the actual values are copied, again in parallel. We modified the most popular graph

libraries to use PIGO and we achieve end-to-end improvements of up to 38× over running

without PIGO. We have continued to support PIGO and it has been used in a variety of

both small and large internal and external projects.

In Chapter 7 [91], we then focus on shared-memory parallel maintenance of cores. We

address both cores and hypergraph cores, enabling nuclei maintenance in parallel. There

have been several prior parallel core maintenance approaches, and the general strategy has

been to identify independent parts of an update, and then process those parts concurrently.

This is a problematic approach because there can be significant connections between many

parts. Prior work has shown that these approaches by and large do not improve runtime as

additional threads are added—speedups of only around 1.5× with 64 cores.

We take an entirely different approach, and provide two scalable and effective algo-

rithms to maintain cores. Both algorithms build on the connection between ℎ-indices and

cores. The first algorithm identifies a large region of the graph and pessimistically incre-

ments all of the values inside of it. This region may be chosen due to vertices sharing

the same initial density value, or being in the same connected component, among others.

10

Critically the region must be fast to calculate and increment. Then, in parallel, all vertices

iteratively compute ℎ-index values with their neighbors’ values until convergence. This

approach ends up both outperforming prior approaches by over 4× and scales well, up to

13× speedup with 16 threads, but comes with significant costs when batches are small.

Our next algorithm takes a separate approach and optimistically assumes that nothing

in the graph will change. Instead, it attaches an identifier to each change in the batch and

then passes that identifier around the graph, while concurrently iteratively computing ℎ-

indices. In the worst case, this may double the convergence time, but it may also result in

significantly less work when changes can be quickly restricted to a small, local region. For

small batches, this approach similarly scales well, up to 11× with 16 threads.

In both cases, when addressing hypergraphs there are a variety of significant additional

concerns and considerations that need to be handled. Overall, our two algorithms are the

first scalable core maintenance algorithms and enable dense region maintenance on graphs

that fit into shared-memory systems.

Part 3: Scaling Out. Third, we focus on scaling out on distributed memory systems.

When graphs are rapidly changing and sufficiently large, or have numerous clients querying

them, they need to be stored on and processed with distributed systems.

Chapter 8 focuses on computing ℎ-indices in a distributed manner, which is a critical

kernel for computing cores and hence nuclei. Prior to this work, the only known approaches

were sequential and based on sorting. We developed a new approach to computing ℎ-

indices that pivots on the input and recurses to one side, similar to fast selection algorithms.

We implemented our algorithm and tested it sequentially, on shared-memory systems,

and on distributed-memory systems. With large inputs we are faster than prior algorithms;

running sequentially, we are even over 1.5× faster, and we scale well from there. In

distributed-memory environments we scale to massive lists, returning the ℎ-index from

a list with 3 trillion integers in under 10 using 6784 cores.

11

In Chapter 9 [93], we focus on developing the first distributed, dynamic graph system

built for rapidly and variably changing graphs. Previous approaches have largely ignored

what we identify as a critical problem, that of elasticity. Many graphs with high rates of

change do not change uniformly over time; instead, they change in both bursty periods and

calm periods. Prior approaches were unable to scale at runtime, and so they either over-

provision during calm periods or are unable to keep up and sustain activity during bursty

periods. Many prior systems focused heavily on partitioning to reduce the kernel runtimes

for breadth-first search or PageRank, which makes elasticity appear only as a distant hope.

We take a different approach. We use two layers of consistent hashing coupled with

a degree sketch to perform elastic partitioning. We then use a shared-nothing architecture

to store and process the graph. We built our system, named ElGA, using typical cloud

assumptions, and designed it to perform batch processing with dynamic edge changes.

Overall, ElGA ends up a serious competitor for distributed graph systems, independent

of dynamic or elastic needs. Even excluding our elasticity and dynamic graph support,

we have faster per-iteration runtimes than state-of-the-art static systems (that use high-

performance computing technologies, such as highly tuned MPI libraries): we are over

2.4× faster. Furthermore, we do not incur any separate partitioning costs. We can elas-

tically scale up and down, and support edge rate changes of around one million updates

per processing core. Running ElGA on only a single shared-memory system, we maintain

connectivity 1.2× faster than shared-memory specific dynamic graph systems. Through

ElGA we show that our design is capable of scaling to hundreds of billions of edges, sup-

porting thousands of concurrent clients, enabling infrastructure scaling, both up and down,

as needed, and effectively computing graph analytics including dense regions.

In summary, we provide a comprehensive set of algorithms, tools, and techniques that

enable extracting dense regions from rapidly changing graphs. Our approaches algorithmi-

cally unify core-like dense regions, provide effective temporal dense region targets, scale

up to take advantage of shared-memory, and scale out to handle massive dynamic graphs.

12

CHAPTER 2

PRELIMINARIES AND NOTATIONS

In this chapter we present preliminary material and notations that are used throughout the

dissertation. We first formally describe the graphs that we consider and their properties,

dynamic graphs, and finally dynamic graph algorithms. We then describe different defi-

nitions of density, various core and core-like regions, and the computational strategies for

computing cores. Finally, we describe large-scale distributed graph systems and focus on

their ability to support variability.

2.1 Graphs and Graph Extensions

A graph is a powerful abstraction that emphasizes the relationships within data, as opposed

to the explicit values.

Definition 2.1. Let 𝑉 be a set and 𝐸 = {𝑒 = {𝑢, 𝑣}}, where 𝑢, 𝑣 ∈ 𝑉 . Then 𝐺 = (𝑉, 𝐸) is a

graph.

The set 𝑉 consists of vertices and 𝐸 consists of edges. These graphs are sometimes

referred to as a simple graphs. While it is easy to put data into this form care needs to

be taken. For example, a computer network data can place IP addresses as vertices and

packets between IP addresses as edges, however just as easily edges could be sufficiently

large packets or long-lived network streams. In many cases the construction of the graph—

choosing what to use as vertices and what to use as edges—can play a significant role in

what a graph algorithm will output.

While graphs prove to be a useful abstraction, in many cases there is more data available

and some algorithms have been developed to take advantage of them. Following we list

several extensions which our dynamic graph systems support.

13

Directed graph Orient each edge 𝑒 ∈ 𝐸 , such that 𝑒 = (𝑢, 𝑣), where 𝑢 is the source vertex

and 𝑣 is the destination vertex.

Multigraph Allow multiple edges two exist, that is change 𝐸 from a set to a multiset.

Weighted graph Each edge is augmented with a weight, which is typically either a real-

valued number or an integer.

Temporal graph Each edge is augmented with two timestamps, one of which corresponds

to the edge creation time and the other an edge deletion time.

A hypergraph is a generalization of graphs where the edges are not restricted to only

consisting of two vertices. These are important to address as they are both natural in many

datasets—those where relationships exist between multiple vertices—and, as we show later,

can be an important tool for dense graph construction.

Definition 2.2. Let 𝑉 be a set and 𝐸 = {𝑒 ⊆ 𝑉}. Then 𝐻 = (𝑉, 𝐸) is a hypergraph.

Hypergraphs are highly related to, but slightly different, from bipartite graphs.

Definition 2.3. Let 𝑉1, 𝑉2 be two sets and 𝐸 = {𝑒 = {𝑢, 𝑣}}, where 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2.

Then 𝐵 = (𝑉1, 𝑉2, 𝐸) is a bipartite graph.

If the hypergraph is naturally extended to a multihypergraph (where 𝐸 is a multiset

that can have empty subset elements), then it is easy to see they are equivalent to bipartite

graphs.

Our algorithms for finding dense regions and their hierarchies are designed for simple

graphs and hypergraphs only, as they are the most widespread form of graphs.

2.2 Graph Properties

There are many properties of graphs and we clarify the ones used throughout this disserta-

tion here. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑢 ∈ 𝑉 .

14

Degree The degree of 𝑢, deg(𝑢), is the number of edges 𝑢 participates in, that is deg(𝑢) =

|{𝑒 : 𝑢 ∈ 𝑒, 𝑒 ∈ 𝐸}|.

Neighbors The neighbors of a vertex are those which are connected via edges to a vertex.

The neighbors are denoted Γ[𝑢]

Subgraph A graph contained within another graph, that is 𝑆 = (𝑉 ′, 𝐸′), where𝑉 ′ ⊆ 𝑉 and

𝐸′ ⊆ 𝐸 .

Induced Subgraph A subgraph formed by taking all well-defined edges given a vertex

set. Let 𝑉 ′ ⊆ 𝑉 . Then, 𝐺 [𝑉 ′] = (𝑉 ′, {𝑒 = {𝑢, 𝑣} : 𝑒 ∈ 𝐸, 𝑢 ∈ 𝑉 ′, 𝑣 ∈ 𝑉 ′}) is an

induced subgraph.

These properties similarly hold in hypergraphs.

2.3 Dynamic Graphs

Throughout this dissertation we consider undirected, simple graphs that are changing over

time, known as dynamic graphs. Let 𝑉 be an infinite set of vertices. We view these graphs

as an infinite turnstile stream S of edge changes, where each change 〈𝑒, 𝑐〉 consists of a

pair of vertices that change, 𝑒 = {𝑢, 𝑣} with 𝑢 ≠ 𝑣 ∈ 𝑉 , and a change type, 𝑐 ∈ {+,−},

where + indicates an edge addition while − indicates removal. For notational convenience

we denote the subsequence in the range 𝑖 to 𝑗 by

S 𝑗
𝑖
=
(
〈𝑒𝑖, 𝑐𝑖〉 , 〈𝑒𝑖+1, 𝑐𝑖+1〉 , . . . , 〈𝑒 𝑗 , 𝑐 𝑗 〉

)
⊂ S.

We call time the position in the stream, so at time 𝑡 the graph 𝐺 (𝑡) = (𝑉 (𝑡) , 𝐸 (𝑡)) can be

derived by applying S𝑡0 in order starting from the empty graph 𝐺 (0) = (∅, ∅). 𝑉 (𝑡) is the

finite vertex set containing vertices in edges seen by time 𝑡. Throughout we assume that for

all 𝑖 ≥ 0, 𝐺 (𝑖) is an undirected simple graph.

15

Note the similarity between dynamic graphs and temporal graphs, defined above. Both

change over time. Hoever, in a temporal graph, the history of all edge insertions and

removals—along with the change time—is preserved. This can provide much more in-

formation to an algorithm, however it is a challenge to make effective use of this informa-

tion [118]. Most temporal graph systems are not built to return real-time results, and so are

not suitable for dynamic algorithms or processing dynamic graphs.

From a system perspective, temporal graphs and dynamic graphs have different goals:

in a dynamic graph, timeliness or the latency of a graph update is most important. In tempo-

ral graphs, retaining history and supporting queries that may look back through regions of

time is most important. In this work, we target both dynamic graphs and temporal graphs,

through the lens of dynamic graph algorithms. In particular, we show that it is possible to

derive interesting and powerful temporal results by applying dynamic graph algorithms for

each timestep, which relies on the timeliness of dynamic graph algorithms for efficiency

reasons.

Another closely related concept is that of streaming graphs. These are also graphs

that change over time. However, a streaming graph algorithm differs from a dynamic

graph algorithm in that it has significant memory and runtime constraints. Streaming graph

algorithms operate only in the turnstile stream of the dynamic graph. This means that they

need to use 𝑜(|𝐸 |) memory and are typically constrained to a small number of passes over

the streaming, meaning a runtime of �̃� (|𝐸 |).

2.4 Dynamic Graph Algorithms

An algorithm that operates on a dynamic graph stream is a dynamic graph algorithm. An

algorithm operating on a stream with only insertions is incremental and one operating only

on deletions is decremental. Let A be a graph algorithm which, given an input graph 𝐺,

produces an output A(𝐺). We call AΔ a dynamic graph algorithm if it takes as input

output from a prior time, say time 𝑖 with 𝑖 < 𝑗 , along with all changes in the stream up to

16

time 𝑗 and produces the correct output for the graph at time 𝑗 . That is, AΔ takes as input

(𝐺 (𝑖) ,A(𝐺 (𝑖)),S 𝑗
𝑖
) and produces as output (𝐺 (𝑗) ,A(𝐺 (𝑗))). This algorithm can then be

repeatedly called as the stream progresses. We call S 𝑗
𝑖

a batch. The latency, or runtime, of

AΔ for S 𝑗
𝑖

is 𝑇AΔ
, and the throughput is |S 𝑗

𝑖
|/𝑇AΔ

.

A maintenance algorithm is used when latency is more important than throughput. Any

reduction in latency is pursued, which commonly reduces throughput. The goal is to de-

velop an algorithm with as small a latency as possible yet a corresponding throughput

capable of sustaining the natural rate of change in the graph.

The following terms are used when referring to dynamic graph algorithms.

Query Latency Query latency is the round-trip-time for a client to request a computation

result for the latest batch.

Query Staleness Query staleness is the time difference between the return time of the

query and any update in the graph and algorithm output. Any positive value means

that a newer result could have been delivered instead, if the system were faster.

Graph Throughput Graph throughput is the number of edge changes per second that are

modified in the graph.

Batch Latency Batch latency is the total computation time for all processors to complete

processing and store results for the given batch.

It is important for query latency and staleness to be low. The graph throughput needs

to be high for rapidly changing graphs. The batch latency is the main computational target

evaluated in dynamic graph algorithms, however it is not directly relevant to the end user.

However, a low batch latency results in a low query staleness.

17

2.5 Dense Regions of Graphs

2.5.1 Definitions of Density

Throughout this dissertation, when we refer to density we are considering edge density [21].

Definition 2.4. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝐴 ⊆ 𝑉 be a set of vertices. Let 𝑆 = 𝐺 [𝐴] =

(𝐴, 𝐸′) be the induced subgraph of 𝐴 in 𝐺. Then, the edge density of 𝑆 is given by

|𝐸′|(𝐴
2
) =

2 |𝐸′|
|𝐴| (|𝐴| − 1) .

Defined in this way, density is one with a 𝑘-clique, where all possible edges exist.

As the subgraph loses edges, density decreases. There are other forms of density, for

example average degree density defined as |𝐸′| /|𝐴|, where 𝐸′ and 𝐴 are defined as in

Definition 2.4. Whereas finding the edge densest subgraph is NP-hard, finding the average

degree densest subgraph is solvable in polynomial time [104]. An interesting problem is

finding the computational boundary between the average degree density and edge density

problems [254].

We do not solve either problem directly, and instead focus on linearly solvable objec-

tives, namely cores and core-like regions, described next. These have become the standard

technique for finding dense regions on large graphs, and have proven useful for many ap-

plications [155, 180].

2.5.2 Cores, Trusses, and Nuclei

A 𝑘-core of a graph [228, 183] is a maximal connected subgraph where each vertex has an

induced degree of at least 𝑘 . The coreness of a vertex is the largest 𝑘 such that the vertex is

in a 𝑘-core. Figure 2.1a shows the coreness values on an example graph.

Note that a decomposition will compute only the coreness values. A full hierarchy is

considered a separate operation. For the most part, 𝑘-core, 𝑘-truss, and other algorithms

18

a
3

b

3
c
3

d

2

e

1
f

3

g

3
h

2
(a) Coreness

a b c d

e f g h

2

2

2
2

2
2

1

2

2
1

1

0 2
1

(b) Trussness

Figure 2.1: A sample graph with its coreness (a) and trussness (b) values shown. Consider
any induced subgraph with ≥ 𝑘 coreness (resp. trussness): the degree (triangles per edge)
will be at least 𝑘 for all vertices (edges).

only focus on the decomposition and leave the full hierarchy computation, which would

return the actual dense regions, as a separate operation. We address this gap later in Chap-

ter 4. It is too expensive to compute the hierarchy in a naive manner, and static hierarchy

computations are built using disjoint-set approaches [221].

A 𝑘-truss community of a graph is also used to find important dense subgraphs [122]. A

𝑘-truss community is a maximal subgraph where each edge is contained in at least (𝑘 − 2)

triangles, and each edge is connected to all other edges through a path of triangle inclusions.

In this chapter, we use a slightly different definition to achieve a simple and unified general-

ization, and define 𝑘-truss community as a maximal subgraph where each edge is contained

in at least 𝑘 triangles, and keep the same connectedness requirement. A 𝑘-truss, but not

a 𝑘-truss community, is an earlier, similar concept without connectivity constraints [50].

The community trussness of an edge is the largest 𝑘 such that an edge is part of a 𝑘-truss

community. Figure 2.1b shows the trussness values on an example graph. Trussness has

also been computed using peeling algorithms [257, 122, 231, 50] in 𝑂 (|𝐸 |3/2).

Coreness and community trussness may seem only related at an algorithmic level.

Sarıyüce et al. showed that there is a deeper connection: by viewing a 𝑘-core as a cohesive

unit where 1-cliques are contained in 2-cliques, and 𝑘-truss communities as cohesive units

where 2-cliques are contained in 3-cliques, the concept was generalized to nuclei [223].

Numerous other targets, similar to cores, have been proposed [180]. [71, 275] develop

19

1−(2,4) nuc
3−(2,4) nuc

Figure 2.2: A (2, 4) nucleus decomposition. Every edge in the 3-(2,4) nucleus has three
distinct 4-cliques it is part of in the nucleus-induced subgraph.

weighted extensions to cores, [170] uses core concepts to reinforce connections within net-

works, [96] proposes notions of cores for multilayer networks, and [271] ensures vertices in

core-like regions are also relatively cohesive given their neighbors. In cases where the cores

are used for downstream algorithms, returning the actual (connected) vertices is identified

as crucial and algorithms are built to support such queries [171].

To understand graph nuclei, let 𝑟, 𝑠 with 1 < 𝑟 < 𝑠 be two integers. Recall an 𝑙-clique

is a fully connected graph with 𝑙 vertices. Each 𝑠-clique internally contains
(𝑠
𝑟

)
𝑟-cliques.

A subgraph 𝑁 ⊆ 𝐺 is a 𝑘-(𝑟, 𝑠) nucleus of a graph if the following hold:

• it is a union of 𝑠-cliques,

• it is maximal,

• each 𝑟-clique in 𝑁 is contained in at least 𝑘 distinct 𝑠-cliques in 𝑁 , known as the

S-degree or support, and

• each pair of 𝑟-cliques can be connected by traversing through 𝑠-clique inclusions,

known as S-connectivity.

The nucleus decomposition value is defined for 𝑟-cliques. It is the largest 𝑘 such that

the 𝑟-clique is in a 𝑘-(𝑟, 𝑠) nucleus but not in any (𝑘 + 1)-(𝑟, 𝑠) nucleus. We denote this

value 𝜅 [𝑥] for 𝑟-clique 𝑥. Note that if an 𝑟-clique is in a 𝑘-(𝑟, 𝑠) nucleus, then it is also in

20

Algorithm 2.1: The peeling algorithm for computing coreness values. The linear
time comes from a bucketing data structure to iterate through vertices, sorted by
𝑑 [𝑣], while modifying 𝑑 [𝑣].

Input: graph 𝐺 = (𝑉, 𝐸)
Output: 𝜏

1 ∀𝑣 ∈ 𝑉 , 𝑑 [𝑣] ← deg(𝑣)
2 𝑘 ← 0
3 for 𝑣 sorted by 𝑑 [𝑣] do
4 if 𝑑 [𝑣] > 𝑘 then
5 𝑘 ← 𝑑 [𝑣]
6 for 𝑛 ∈ Γ[𝑣] do
7 𝑑 [𝑛] ← 𝑑 [𝑛] − 1
8 𝜏[𝑣] ← 𝑘

9 delete 𝑑 [𝑣]
10 return 𝜏

a 𝑘′ ≤ 𝑘 nucleus. Additionally, the connected components of nuclei at different 𝑘 levels

form a laminar family. This property means that given 𝜅 and connectivity information, a

hierarchy can be formed that contains every nucleus and its 𝑟-clique membership [221, 80].

Therefore, we are interested in computing 𝜅 for each 𝑟-clique. The support of an 𝑟-clique,

denoted sup, is the number of distinct 𝑠-cliques that it is contained in. An example showing

nucleus decomposition values is shown in Figure 2.2.

2.5.3 Static Computation

The most straightforward way of computing cores is through “peeling.” [183] In this ap-

proach, vertices are iteratively removed—typically by keeping track of whether they are

active or not, not by modifying the graph—if their degree is less than 𝑘 . Any vertex that

is removed has its 𝑘-core value assigned as 𝑘 . When all vertices are removed, the process

stops. If vertices are organized in buckets based on their degree, this process can be done

in𝑂 (|𝑉 | + |𝐸 |) [183]. Variants of this approach are used for processing in parallel [56, 135,

58]. Parallelization in these approaches largely occurs by taking advantage of parallelism

within levels. A core peeling algorithm is shown in Algorithm 2.1.

A separate approach follows the connection between ℎ-indices[116] and 𝑘-cores [174].

21

Algorithm 2.2: An ℎ-index algorithm to compute coreness values.
Input: graph 𝐺 = (𝑉, 𝐸)
Output: 𝜏

1 ∀𝑣 ∈ 𝑉 , 𝜏[𝑣] ← deg(𝑣)
2 𝑡 ← 0
3 repeat
4 for 𝑣 ∈ 𝑉 do
5 𝐿 ←

〈
𝜏𝑡−1 [𝑤] : 𝑤 ∈ Γ[𝑣]

〉
6 𝜏𝑡 [𝑣] ← H-INDEX(𝐿)
7 𝑡 ← 𝑡 + 1
8 until 𝜏 no longer changes, converging to core values
9 return 𝜏

This strategy was first developed as a distributed algorithm [196] and later shown to be

close to state-of-the-art in a shared-memory setting [222]. The idea of this approach is to

iteratively update a local value associated with each vertex. The local value on vertices is

initialized high, and in each iteration the ℎ-index of each vertices’ neighbors’ local values is

computed. The process terminates when changes are made. The advantage of this approach

is that each vertex can operate independently, asynchronously. This algorithm is shown in

Algorithm 2.2.

2.5.4 Hypergraph Cores

In hypergraphs a core is defined exactly the same way: it is a maximal connected subgraph

with minimum degree at least 𝑘 . Similarly, a 𝑘-core value for a vertex in a hypergraph is

the largest value 𝑘 such that a vertex is in a 𝑘-core but not in any (𝑘 + 1)-core. An example

hypergraph and its 𝑘-core decomposition is shown in Figure 2.3.

Cores have proven most useful with co-occurrence hypergraphs in social network anal-

ysis [243], however work on them is only now beginning [233]. Cores have proven crucial

for specialized, derived hypergraphs in erasure codes [175], bloom filters [192, 45, 106],

satisfiability problems [38, 194], and hashing [200].

(𝛼, 𝛽)-cores [62, 171] are developed for bipartite graphs, and essentially allow for two,

22

HyperedgesVertices

2-core

3-core

1-core

3-core

2-core

Figure 2.3: An example hypergraph and its cores.

separate 𝑘 values for 𝛼-cores from 𝑉1 and 𝛽-cores from 𝑉2. This is separate from hyper-

graph cores as in hypergraph cores an edge is either completely included in the core, or

completely excluded. In (𝛼, 𝛽)-cores, a vertex may have only some of its (bipartite graph)

edges included.

In hypergraphs, the standard peeling approach works as well, including in parallel [233].

Handling 𝑘-cores in dynamic hypergraphs has seen recent attention [243]. Here, the au-

thors identified the need and demonstrated the importance of solving hypergraph 𝑘-cores.

Due to the runtime of prior graph approaches, they present only an approximate sequential

solution, again based on peeling.

2.5.5 Maintenance Approaches

There are two main approaches for maintaining cores on dynamic graphs. The first is

known as the traversal algorithm [225, 164]. Given a new edge, it performs a depth-first

graph traversal from the endpoint with the lowest coreness. The traversal remains within

a subcore, which is a connected region with the same coreness value. If it comes across a

vertex unable to increase, it stops searching that path. The second is known as the order

algorithm [274]. A valid order, or decomposition order, is an ordering of vertices such that

23

if they are deleted, the coreness On an edge insertion, this algorithm inductively assumes

the vertices are in a valid “peeling” order. The order based approach was extended, in the

truss setting, to handle batches [273]. This approach is not parallel, but takes advantage of

overlapping work inside of batches and uses that to improve performance.

Parallel approaches have relied on identifying a set of vertices that can be indepen-

dently peeled [131, 6, 121, 14]. Unfortunately, on real-world graphs those opportunities

are limited, and these approaches suffer major scalability problems as the number of cores

grow. Concurrent to our work, [98] considers ℎ-index based methods for dynamic core

maintenance. Unfortunately, this work is not parallel and the approach is not competitive

against state-of-the-art sequential methods [274, 273].

Bai et al. [19] and Zhang and Yu [273] propose batch algorithms that reduce work as

multiple edges are processed simultaneously.

2.6 Large-Scale Dynamic Graph Systems

In this section we provide an overview of both distributed graph systems with a focus

on dynamic systems, along with the closely related dataflow systems. We focus on the

elasticity of the systems, as this determines whether they can effectively scale to handle

highly variable workloads at runtime.

There are two main categories of graph systems: performance focused systems and

database systems. The goals and inputs of each type of system vary. In performance fo-

cused systems, graphs will typically be read from the disk in a format that only includes

their structure. The computation will run as a batch operation and save the results back to

disk, before shutting down the runtime. In a graph database system, the graph will typ-

ically persist in memory and handle changes. In these systems, the queries are typically

lightweight and easy to process, and the challenge is in efficiently and resiliently storing

the graph along with the associated attributes. There are a significant number of highly im-

pactful performance focused static graph systems and database graph systems [217, 184].

24

2.6.1 Dynamic and Partially Dynamic Graph Systems

There are numerous distributed graph systems that have been proposed and developed and

many have some notion of a changing, or dynamic, underlying graph. A thorough review

of prior systems is given in [26]. Here, we provide a brief overview to highlight the gap in

dynamic, elastic systems. We call a system partially dynamic if re-running from a previous

output is possible, and fully dynamic if it supports low-latency queries and is built to handle

a rapidly changing graph.

ChronoGraph [74] is a fully dynamic system built in NodeJS, but not elastic. An evalu-

ation framework for any stream-based graph system is provided in [73]. An elastic system

for data stream processing is given in [101], but it does not support dynamic graphs. Simi-

lar to other cloud systems, it uses consistent hashing, which we rely on as well. However, it

is a generic stream processing framework and not designed to handle graphs, in particular

high-degree vertices on scale-free networks. EdgeScaler [204] adds a elastic partitioning

scheme to static graph systems. However, it does not extend to incremental or dynamic

graphs.

GraM [265] has a follows a shared-nothing architecture. It performs message passing,

allowing it to scale up on a single machine as well as out to a cluster. However, it is tuned

to use low-level features of NICs, such as RDMA, which may not be available in general

cloud environments. Furthermore, it does not have support for elasticity or dynamic graphs.

Kineograph [46] is a dynamic graph system that provides a simple programming model

to operate on snapshots of the graph. It has support for replication, and outlined the need

for elasticity along with a rough approach. In [195], a dynamic graph system was built on

top of CouchDB. This work focused on understanding replication strategies and factors to

minimize traversals and optimize load imbalance. Concerto [154] uses elastic key-value

stores internally, but does not explicitly support scaling. It stores graph updates in custom

data structures. While it inherits some fault tolerance support from underlying key-value

stores, it is not elastic and the fault tolerance is not carried upwards into the graph process-

25

ing itself. GraphTau [127] is a dynamic graph system built on top of Spark. It has support

for recovering from failures by periodic checkpointing. ZipG [140] stores graph updates in

a compressed format. This compressed format is capable enough to handle a large number

of queries, and so the number of machines required is low. UNICORN [244] is a dynamic

graph system built on top of IBM InfoSphere Streams. CellIQ [126] is a domain-specific

dynamic graph system optimized for analytics on cellular phone networks and is built on

top of GraphX. KickStarter [256] takes a different approach to dynamic graph processing

by inexpensively maintaining an approximate computation. Then, if the accurate compu-

tation is required, it can try to skip the intermediate maintenance steps and provide a full

result sooner. Delta-BiGJoin [11] is an approach implemented in Timely Dataflow [198]

that is optimized for efficient subgraph queries. Sprouter [2] is a dynamic system built

on top of Spark that uses both Spark’s streaming and batch processing APIs. Sallinen et

al. [218] propose a model where edge changes are timestamped and answers are retained

for each observed timestamp. None of these address elasticity.

GRAPE [79] is a distributed graph system that can be extended to support incremental

computation and operates in a variant of a local computation model. However, it requires

the graph to be accessible on a single master machine, breaking typical memory require-

ments of distributed graph systems. Further work [76, 78] has improved the system to use

consistent hashing to allow for dynamic scaling of machines, similar to our overall ap-

proach. However, this does not take a shared-nothing approach to resolving high-degree

vertices through count sketches, as we do, and additionally is not designed for dynamic

graphs. A1 [40] is a dynamic attributed graph database that is in-memory and communi-

cates over RDMA by building on FaRM [65]. A1 inherits FaRM’s elasticity, but is limited

in its scope to querying subgraphs and retrieve vertex and edge attributes; it does not sup-

port dynamic graph algorithms.

A demonstration of a system based on the Floe streaming engine, which is incremental-

only and operates on snapshots, is given in [262].

26

Monarch [129] presents a model addressing geographically distributed graphs, where

the latencies between separate partitions can be very high.

There are several high-performance shared-memory dynamic graph systems suitable

for graphs that fit on a single node. RisGraph [83], GraphOne [146], and Aspen [59]

are state-of-the-art shared memory systems. While they have impressive performance for

both ingestion rates and analytics, as temporal graphs grow shared-memory cannot keep up.

STINGER [67] and Llama [178] similarly are limited to shared-memory. GraphIn [230] ex-

tends the gather-apply-scatter model to the incremental case and develops a shared-memory

implementation.

2.6.2 Dataflow Systems

Differential dataflow systems [188] are a general purpose strategy for handling incremental

or dynamic computation. The Timely Dataflow system [198] includes a virtual clock which

enables iteration processing in differential dataflows and subsequently supports graph pro-

cessing. Apache Flink [41] provides both stream processing and batch processing in the

same system, and includes a graph layer Gelly. Tornado [232] is a general purpose iterative

computation framework that performs approximate computations until an accurate compu-

tation is requested. None of the above dataflow systems have addressed elasticity during

computation, and require a re-configuration and re-deployment phase to add or remove

resources.

2.7 Temporal Dense Regions

An important problem is determining dense regions in graphs that are evolving over time,

instead of only finding dense regions for the immediate, most recent graph. There has been

a significant amount of work on temporal dense regions that exactly solve this. As we show

later, in Chapter 5, these definitions are all vertex-focused. They define a subgraph based on

properties of the internal vertices, and then search in a temporal space to find the maximum

27

such subgraph.

Temporal dense regions can be broken down first by how density is defined: either

as edge density, average degree density, the sum of weights, or other approaches such as

cohesiveness. Second, temporal dense approaches have a temporal aspect which controls

what target is pursued: the longest lasting region, observation of bursts, periodic behavior,

and so on.

2.7.1 Edge Density

Using the ratio of number of edges in a subgraph to the total possible number of edges is

the predominant approach for finding dense regions. The problem of finding the densest

graph, an clique, is a classic NP hard problem. There have been numerous approaches to

identifying temporal dense regions, which we outline here.

Wu et al. [264] uses the number of edges after projecting the temporal graph to a multi-

graph as the second constraint for the dense subgraph, namely the ℎ in (𝑘, ℎ)-cores. Re-

cently, [18] studied (𝑘, ℎ)-core maintenance.

Li et al. [163] considers (𝜃, 𝜏)-persistent 𝑘-cores, which are defined for a time interval

𝐼 such that the 𝑘-core is present in any 𝜃-length subinterval of 𝐼. The problem is shown to

be NP-hard and provided heuristics first perform peeling and then search for such maximal

time intervals. Li et al. [165] study (𝜃, 𝜏)-continual 𝑘-cores from a local perspective, find-

ing only cores that contain a query vertex, similar to a community search problem. Hung

and Tseng [123] are defined similarly, proposing (𝑙, 𝑘)-lasting cores which are maximal

and last for time 𝑙.

Span-cores [95, 97], also known as (𝑘,Δ)-cores, are defined with Δ as a time interval

and such that each vertex in the (𝑘,Δ)-core has a degree at least 𝑘 for the entire interval.

Note that if a vertex has a degree drop below 𝑘 for any part of the interval, it cannot be

used.

Qin et al. [206, 208] find both 𝑘-cores and 𝑘-cliques that occur periodically. Each

28

identified subgraph, which can be either a 𝑘-core or 𝑘-clique, must appear in a discretized

graph at some constant 𝑝 distance from a previous and next version. This problem is also

NP hard for 𝑘-cliques, and the core variants are used to prune for clique finding.

Earlier work [4] builds a probabilistic pattern to match high density regions defined

as pseudo-cliques. It uses min-hash to identify matches and takes a single pass over the

stream. The goal is to find frequently occurring matches.

Lin et al. [167] studies diversified top-𝑟 lasting (𝑘, 𝜎)-cores. These are cores that last

𝜎 long, similar to other definitions, but the proposed mining objective finds the top-𝑟 cores

that are diversified, that is they cover vertices and time as best as possible. This is also

shown to be an NP-hard problem.

Yang et al. [268] looks at quasi-cliques that are present within a time range and [166]

considers quasi-cliques that need to be present on average within a time range.

Yu et al. [269] finds historical 𝑘-cores and develops an index to quickly query them.

Historical 𝑘-cores are 𝑘-cores that are present in some graph snapshot over a time range.

This is not an inherently temporal core, but instead a static computation on a given snapshot,

and can be viewed as lasting cores depending on the snapshot length.

Dai et al. [54] finds early bursting subgraphs which are 𝑘-cores, however it does not

demand that the subgraph is around for some period of time.

2.7.2 Density as Average Degree

It is less common but can still be valuable to find dense regions where density is defined

as the average degree for a subgraph, which is known as the densest subgraph problem.

Unlike the ratio of edges to the possible number of edges, computing a maximal subgraph

with the highest average degree is a polynomial time solvable problem.

Qin et al. [207] proposes an (𝑙, 𝛿)-maximal dense core which has an average degree at

least 𝛿 in a time segment with length at least 𝑙.

Liu et al. [172, 173] looks for a densest longest subgraph that is present in a continuous

29

range. The proposed algorithm samples to get a match for their model, which is then used

as the dense region.

Both Jethava and Beerenwinkel [130] and Semertzidis et al. [229] both find subgraphs

that last a long period of time and are densest, defined either as the average degree or as the

minimum degree.

Rozenshtein et al. [216] develops techniques to find the densest regions not only for

average degree density but also generalized cover functions, which is an NP-hard problem.

2.7.3 Other Density Notions and Related Approaches

There are several other approaches that find dense regions with specialized definitions of

density, or are related but not focused on dense regions.

In some approaches graphs have fixed nodes but temporally varying weights [31, 177].

They use the sum of edge weights (which are both positive and negative) as the subgraph

score. This problem is NP-hard, and the computational approaches limit the number of

temporal intervals to look at, given a temporal region 𝑇 , from |𝑇 |2 to |𝑇 | log |𝑇 | [31] or

build upwards to consider only a small constant number of intervals.

Chu et al. [48] finds a dense region that quickly becomes dense, that is it is part of a

burst of changes, and the dense region remains around for a time threshold. Density is a

measure of cohesiveness of the temporal graph. This is shown to be an NP-hard problem.

Lahiri and Berger-Wolf [153] provide a polynomial time approach for finding periodic

subgraphs. These are subgraphs that occur at a regular interval (with some jitter potentially

present), but are not necessarily dense. Belth et al. [24] finds small motifs that are either

persistent or bursty, and have a given frequency, but does not specialize in dense motifs.

2.7.4 Dense Regions and Community Detection

There is a significant literature developing effective and useful community detection algo-

rithms for graph data [86], including temporal graphs [87], which differs in objectives from

30

Figure 2.4: Running Louvain three times on a medium-sized graph. A dense region’s
community is highlighted. Each run of Louvain results in drastically different communities,
showing the algorithm is unstable. Similar results occur for many graphs at this scale across
many algorithms.

dense region tracking but shares some similarities. The objective is to label each vertex

with one (or more, occasionally fewer) communities that it belongs to, where a community

ideally represents a cohesive unit.

The most straightforward temporal community detection approach is to run community

detection independently for each timestep (or graph snapshot), and then link the timesteps

together [119, 16, 201]. This is similar at a high level to our core chain approach, de-

scribed in Chapter 5. Various measures can be used to assist matching a community at time

𝑡 −1 and time 𝑡, including many information theoretic measures such as normalized mutual

information [185]. There are other approaches as well, such as FacetNet [168], that use ap-

proaches such as non-negative matrix or tensor factorization, however these approaches do

not scale well to massive, sparse graphs. In order to understand why community detection

based approaches are not well suited for identifying the hierarchical structure that is found

from dense regions, we highlight an important problem with the stability of results [94].

Many community detection algorithms are designed, implemented, and validated on

small or medium sized graphs—those with thousands to millions of edges. As a famous

example, almost all community detection algorithms evaluate themselves against the karate

club network [270] with 34 vertices (people) and 78 edges (friendships). The problem

arises when the graphs increase in scale. As graphs scale to millions and billions of edges,

31

many algorithms can run (potentially after significant technical effort), but may fail to pro-

vide a useful result.

In Figure 2.4, one of the most popular community detection algorithms, Louvain [29],

is run on a medium sized graph. A group of densely connected vertices is selected and

the community corresponding to that group is highlighted. Even though no parameters are

changed, multiple runs of Louvain produce completely different communities. We have

found similar results with numerous variants of Louvain, including modern variants with

patches such as Leiden [249].

An important reason to focus on dense regions is that such regions tend to be much

more stable, and the approach of simply linking the points in the hierarchy with values

that share the largest information theoretic measures or overlap does not apply well to the

hierarchical nature.

32

CHAPTER 3

UNIFYING DENSE REGIONS THROUGH HYPERGRAPH CORES

Many real-world graphs are large, unstructured, and sparse. Within these sparse graphs

are locally dense structures. Extracting dense subgraphs from such graphs has proven

useful for a variety tasks including deriving news stories from blogs [13], finding commu-

nities in websites [148, 64], identifying link spam websites [103], and uncovering motifs

in DNA [88]. Not only are dense subgraphs inherently useful, they are helpful as kernels

in graph visualization [10] and optimizing computation [132]. As such, dense subgraph

extraction is a fundamental problem in graph mining.

Finding the largest densest subgraph, or maximum clique, is a classic NP-hard prob-

lem [138], and finding clique-like objects remains hard [39, 52]. Instead, dense subgraph

extraction has shifted towards the notion of cores of a graph [228, 183]. The 𝑘-core is a

maximal connected subgraph where every vertex has an induced degree at least 𝑘 . Cores

in a graph produce hierarchies of dense regions in a laminar family. Importantly, cores can

be computed in linear time efficiently.

Unfortunately, on some graphs 𝑘-core hierarchies are funnel-shaped around a single

large core and fail to uncover other useful, deep structure in graphs [122, 50, 223]. As

an example, funnel-shaped hierarchies fail to uncover separate similarly dense regions,

track vertex movement between such regions, or measure non-trivial changes in the hier-

archy’s structure over time. As such, there have been extensions to and generalizations

of cores hoping to improve the resulting quality, including adding constraints [271], using

weights [71], and abstracting to edges [50] and other clique-inclusions [223]. For each of

these derivative targets, custom algorithms, data structures, and techniques are developed.

For static graphs, the algorithms tend to be simple and easy to implement and maintain.

However, this becomes a significant problem with dynamic graphs, where edges contin-

33

uously change as, for example, real-world data continues to stream. In this case, core

maintenance algorithms are complex and difficult to develop [224, 164, 274, 121]. Main-

tenance for corresponding extensions, while heavily relying on concepts from 𝑘-cores, are

similarly involved [122, 273, 271]. Dynamic algorithms, or maintenance algorithms, are

increasingly important as data rates increase and interactive or even real time (low latency)

queries are desired. Consider detecting lateral phishing attacks [117] in enterprise email

systems: a vertex joining many dense regions indicates that a user is reaching out to mul-

tiple separate cohesive groups. Today’s enterprises see tens of thousands of emails daily

and a low detection latency (along with a low false positive rate) could allow an attack to

be stopped. A static algorithm running a few times per day would be insufficient but a

maintenance algorithm with a latency of tens of seconds would be enough.

For this reason, and their practical importance, we consider maintenance algorithms.

We focus on the generalization of graph cores to nuclei [223], which includes truss com-

munities. We propose a unifying framework that reduces any nuclei computation to a core

computation on hypergraphs which is very closely related to computing graph cores. This

importantly allows for any progress in core maintenance algorithms to directly and effort-

lessly impact maintenance algorithms for trusses and its generalization to nuclei.

Our approach splits the problem into two parts. First, we maintain a hypergraph that

contains components of nuclei. We do this by identifying whether the addition or removal

of an edge would, respectively, complete or break a small, parameter-sized clique (typically

a triangle or 4-clique). Second, we maintain 𝑘-cores in the hypergraph using standard 𝑘-

core maintenance algorithms. Our approach and implementations are general for arbitrary

nuclei.

To demonstrate the application of this novel approach and retention of efficiency of al-

gorithms built for graphs when applied to hypergraphs, we introduce traversal [224] and

order [274] hypergraph core maintenance algorithms. Our traversal algorithm, configured

to solve trusses, has similar performance to the best publicly available truss maintenance

34

implementation DyTruss [122] when clustering coefficients are high and outperforms it

otherwise. This is expected, as DyTruss is derived from traversal-based 𝑘-core algorithms.

Our order algorithm always outperforms traversal and DyTruss, similar to [274] outper-

forming traversal for 𝑘-cores.

Furthermore, we show that our approach provides a useful maintenance algorithm for

nuclei. Over a variety of real-world graphs, we return queries before the cost of computing

nuclei from scratch, even for complex nuclei.

We have the following contributions:

• We prove in the locally persistent model that any nucleus maintenance algorithm is

unbounded, informing our complexity analysis.

• We relate cores and nuclei by proving computing nucleus decompositions is equiva-

lent to finding 𝑘-cores in an (𝑟, 𝑠)-hypergraph 𝐻.

• We establish properties crucial to maintenance on hypergraph 𝑘-cores and provide

two 𝑘-core hypergraph maintenance algorithms: traversal and order.

• We provide a fully dynamic nucleus algorithm, using small clique enumeration and

𝑘-core maintenance.

• We perform an experimental evaluation and demonstrate our implementation’s ap-

plicability for providing low latency results on rapidly changing, moderately sized

real-world graphs and that developing 𝑘-core hypergraph maintenance algorithms

immediately apply to core, truss, and other nucleus maintenance.

The remainder of this chapter is organized as follows. § 3.1 studies the complexity of

nucleus maintenance. § 3.2 equates nucleus decompositions and hypergraph 𝑘-cores and

develops core maintenance results in hypergraphs. § 3.3 introduces our new 𝐻 maintenance

algorithm and hypergraph changes to 𝑘-core graph algorithms. § 3.4 presents experimental

results and discussions and § 3.5 provides a discussion on the results.

35

3.1 Computational Complexity of Updates

Dynamic algorithms are used when latency is more important than throughput or efficiency.

Can we understand how much lower the latency will be? Such algorithms are not well

suited for standard worst-case complexity; there can be a large range of useful algorithms

AΔ with𝑂 (𝑇AΔ
) = 𝑂 (𝑇A). The locally persistent model [211, 8] was developed to explore

a dynamic graph algorithm’s complexity in terms of the fundamentally necessary changes

to the graph as determined by A and recently extended to consider batches [77]. Algo-

rithms in this model are constrained to store only local data per-vertex and not include

any auxiliary or global data structures. A problem is bounded in this model if for some

AΔ there exists a polynomial 𝑓 and constant 𝑐 such that for any stream S and time range

𝑖 < 𝑗 , AΔ(𝐺 (𝑖) ,A(𝐺 (𝑖)),S 𝑗𝑖) runs in 𝑂 (𝑓 (|𝑋 |𝑐)) , where for |𝑋 |𝑐 is the 𝑐-hop neighbor-

hood around vertices that have their local data changed between time 𝑖 and 𝑗 .

A bounded algorithm in this model may have 𝑜(|𝐸 |) runtime complexity when only

some of the graph changes, whereas an unbounded algorithm cannot. We study bounded-

ness in this model because a bounded algorithm can then provide asymptotically less work.

For unbounded problems, we can frame complexity in problem-specific models [77, 273]

or study algorithms’ empirical latency distributions over representative datasets.

Zhang et al. recently proved that under the locally persistent model it is not possible to

bound edge insertions for computing 𝑘-cores and 𝑘-trusses [273]. We demonstrate a more

general result, that the unboundedness holds for all dynamic (𝑟, 𝑠) nucleus decompositions.

We prove this by building a specific graph such that any dynamic algorithm must visit the

whole graph on certain inputs, even when no change will result.

Theorem 3.1. Let AΔ be a locally persistent (𝑟, 𝑠)-nucleus maintenance algorithm, with

𝑟 < 𝑠. Then AΔ is unbounded.

Proof. This is a proof by contradiction. We will carefully construct a graph 𝐺 such that

the individual insertion of two far apart edges will not change any 𝜅 values. However, if

36

all consecutive
have sup ≥ 2

if sup = 1, build
new (𝑠 + 1) clique

Θ(𝑙) vertices
. . .

. . .

(a) The graph before 𝑠-cliques are broken.

edges are removed
breaking 𝑠-cliques

𝑦
𝑥

. . .

. . .

sup drops to 1
all 𝜅 drop in loop

(b) The finished unbounded graph.

Figure 3.1: An example unbounded graph constructed for (3, 5) nuclei where dots are
vertices and arcs show an 𝑠-clique among vertices under it. In (a), the graph with 𝜅 = 2
is built. All consecutive 𝑟-cliques have their support from the ring, and all other 𝑟-cliques
have new (𝑠 + 1)-cliques built to maintain their support. In (b), two edges are removed
arbitrarily far apart from each other. The 𝑟-cliques in the ring will drop their 𝜅 values as
they lose their support. Adding in just one edge will not change 𝜅; only adding both in will
recover 𝜅.

both edges are inserted, 𝜅 values will change. This forces any algorithm on either insertion

to visit an arbitrarily large portion of the graph, and hence will show that AΔ must be

unbounded.

Assume thatAΔ is bounded. Construct 𝐺 as follows. Let 𝑙 be an integer and 𝑠 > 𝑟 > 0

be integers. Create 2𝑙 + 𝑘 different 𝑠-cliques overlapped on one vertex, without letting any

vertex be overlapped more than 𝑠 times, for some small 𝑘 . Next, connect the overlapping

𝑠-cliques back to the beginning, forming a loop with some vertices having support of 2.

Let 𝑥, 𝑦 be two farthest apart edges with a support of 2. For each 𝑟-clique with a support

of 1, create a new (𝑠 + 1)-clique it is part of. Finally, remove 𝑥 and 𝑦. An example of the

construction for (3, 5) nuclei is shown in Figure 3.1. This overlapping construction tool is

illustrated in Figure 3.2.

Observe that the 𝑟-cliques with an original support of 1 now have a 𝜅 value of at least

2, and those in the original loop, which has been broken, now have a 𝜅 value of 1.

37

𝐶1 𝐶2

𝑎1
𝑎𝑠+1

𝑎2

. . .

remaining 𝑠 − 1 vertices

Figure 3.2: Construction tool in Theorem 3.1. 𝐶1 and 𝐶2 are 𝑠-cliques sharing all but 𝑎1,
𝑎𝑠+1, and sup(𝑎2) ≥ 2.

Let R be the set of 𝑟-cliques whose 𝜅 value changes, |R|𝑐 be the 𝑐-hop neighborhood

around R, and tr(A) denote vertices visited byA. Now, asAΔ is bounded by assumption,

there exists a polynomial function 𝑓 and constant 𝑐 such that for all graph changes 𝑆,

AΔ(𝐺, 𝜅, 𝑆) ∈ 𝑂 (𝑓 (|R|𝑐)). Note that if only 𝑥 or 𝑦 is added to 𝐺 then no 𝜅 values will

change. So, we know that R = ∅ for both (𝐺, 𝜅, (〈𝑥, +〉)) and (𝐺, 𝜅, (〈𝑦, +〉)), and so

𝑂 (𝑓 (|R|𝑐)) = 𝑂 (1) and hence for 𝑆 ∈ {(〈𝑥, +〉), (〈𝑦, +〉)}, |tr(AΔ(𝐺, 𝜅, 𝑆)) | ∈ 𝑂 (1).

Now, consider 𝑆 = (〈𝑦, +〉). If 𝑥 has been inserted already, we have 𝜅 ≥ 2 for all 𝑟-

cliques in 𝐺. Let 𝑧 be an 𝑟-clique in the middle of the loop, that is Θ(𝑙) away from 𝑥 and 𝑦,

that has a 𝜅 change. Recall locally persistent algorithms can only make changes based on

a traversal of the graph, so AΔ has no way of knowing whether the graph is 𝐺 or 𝐺 ∪ {𝑥}

without visiting 𝑥’s endpoints. Yet, 𝑧 must change when it is 𝐺 ∪ {𝑥}, but not when the

input graph is 𝐺. Also, 𝑧 must be visited with both 𝐺 ∪ {𝑥} and 𝐺 ∪ {𝑦}, as applying either

individually has the same impact to 𝜅. So,

|tr(AΔ(𝐺, 𝜅, (〈𝑥, +〉))) | + |tr(AΔ(𝐺, 𝜅, (〈𝑦, +〉))) | = Θ(𝑙),

which is a contradiction and thus AΔ cannot be bounded. �

Theorem 3.2. Let A−
Δ

be a locally persistent (𝑟, 𝑠)-nucleus decremental algorithm, with

𝑟 < 𝑠. Then A−
Δ

is bounded.

Proof. (Sketch) Consider our algorithm, presented in § 3.3. Note that it is locally persistent

when using a locally persistent hypergraph 𝑘-core algorithm, such as a traversal based

38

algorithm. Boundedness follows by applying Theorem 3.3, presented next. �

Given Theorem 3.1, we cannot expect to find a bounded algorithm and under standard

models our worst-case runtime complexity will be the same as a full, static computation.

Note that the structure constructed in this proof is not likely to exist in real-world graphs,

and so we instead focus on empirically demonstrating the behavior of algorithms and work

to reduce variability.

3.2 Nuclei and Hypercores

In this section we establish that nucleus decomposition can be reduced to hypergraph 𝑘-

core computation. We first introduce the (𝑟, 𝑠)-hypergraph of a graph 𝐺. Let 𝐻 = (𝑋,𝑌),

where each vertex 𝑣 ∈ 𝑋 is an 𝑟-clique in 𝐺, and each hyperedge 𝑒 ∈ 𝑌 is an 𝑠-clique in 𝐺.

An 𝑟-clique 𝑣 is present in a hyperedge 𝑒, i.e., 𝑣 ∈ 𝑒 ∈ 𝑌 , when that 𝑟-clique is contained

in the corresponding 𝑠-clique in 𝐺. The degree of each vertex in 𝐻 is the support of the

corresponding 𝑟-clique in 𝐺.

An example showing how 𝐻 reflects 𝑟- and 𝑠-cliques is in Figure 3.3. Figure 3.3a

shows a (2, 3)-hypergraph where each edge of the original graph is represented as a ver-

tex (circle) and each triangle is a hyperedge (rectangle). Similarly Figure 3.3b shows a

(3, 4)-hypergraph where each triangle of the original graph is a vertex and each 4-clique a

hyperedge.

Establishing that computing the hypergraph 𝑘-core is equivalent to computing the (𝑟, 𝑠)

nucleus decomposition in 𝐺 is important, as it allows the computational problem to be split

into two: first, 𝐻 can be maintained by adding and removing hyperedges as necessary when

𝑠-cliques are formed and destroyed; second, 𝑘-cores in 𝐻 can be maintained.

Theorem 3.3. Let 𝐺 be a simple undirected graph and 𝑟 < 𝑠. Let 𝐻 be the (𝑟, 𝑠)-

hypergraph corresponding to 𝐺. There is a one-to-one correspondence between a 𝑘-(𝑟, 𝑠)

nucleus in 𝐺 and a 𝑘-core in 𝐻.

39

ab

bc

cd

af

ag

fgef gh

bf cg

bg

cf

dhdg
abf

abg

bfg

bcg

cfg dgh

cdg

bcf

afg0

2
1

1
1

1
2

222
2

2 2
2

(a) (2, 3)-hypergraph

abf

abg

bfg

bcg

cfg dgh

cdg

bcf

afg

abfg bcfg

1

1

1

1 1
1

1
0

0

(b) (3, 4)-hypergraph

Figure 3.3: (2, 3)- and (3, 4)-hypergraphs of the graph displayed in Figure 2.1 with (2, 3)-
and (3, 4)-nucleus decomposition values. Vertices (circles) and hyperedges (rectangles) are
labeled for presentation.

Proof. Let 𝐶 ⊆ 𝐺 be a 𝑘-(𝑟, 𝑠) nucleus in 𝐺. Then, 𝐶 is a maximal set of edges of 𝑠-

cliques such that for each 𝑟-clique 𝑢 in an 𝑠-clique 𝑆, 𝑢 has an 𝑆-degree at least 𝑘 and is

𝑆-connected. Let 𝐾 be the set of 𝑟-cliques that are in 𝐶. Let 𝑆1, . . . , 𝑆𝑙 be the 𝑠-cliques

that 𝑢 participates in. In 𝐻, 𝑢 will participate in the edges 𝑆1, . . . , 𝑆𝑙 . Since 𝑙 ≥ 𝑘 , we have

deg𝐻 (𝑢) ≥ 𝑘 . Also for all 𝑟-cliques 𝑣 in 𝐶, there is a path 𝑢, 𝑢1, 𝑢2, . . . , 𝑢𝑚, 𝑣 such that

{𝑢, 𝑢1} ∈ 𝑆′1, {𝑢𝑚, 𝑣} ∈ 𝑆′𝑚−1, and {𝑢𝑖, 𝑢𝑖−1} ∈ 𝑆′𝑖 for all 0 < 𝑖 < 𝑚, for some 𝑆′
𝑖
. So, for

every 𝑢, 𝑣 ∈ 𝐾 , we have connectivity.

Now, we need to show that 𝐾 is maximal. Suppose that 𝐾′ ⊃ 𝐾 is a 𝑘-core in 𝐻. Recall

that 𝑘-cores in hypergraphs require every vertex 𝑢 in each edge to have degree at least 𝑘 ,

so for all 𝑒 ∈ 𝐸 (𝐻 [𝐾′]) (edges from 𝐻′ induced from the vertices 𝐾′), we have that for

𝑢 ∈ 𝑒, deg𝐻 [𝐾 ′] ≥ 𝑘 . Let 𝐶′ consist of the edges in 𝐺 corresponding to each 𝑠-clique in

𝐸 (𝐻 [𝐾′]). Then, 𝐶′ ⊃ 𝐶, and 𝐶′ is a 𝑘-(𝑟, 𝑠) nucleus as 𝐻 is constructed from 𝑟 and

𝑠-cliques, and 𝐾′ is connected, which is a contradiction that 𝐶 is maximal.

A similar argument shows that finding a 𝑘-core 𝐾 in 𝐻 will produce a 𝑘-(𝑟, 𝑠) nucleus

in 𝐺. �

After finding 𝐻, the 𝑘-(𝑟, 𝑠) nucleus can be computed by determining the 𝑘-core in 𝐻,

by applying Theorem 3.3. The importance of this result is that we can apply results from

𝑘-core maintenance after only minor extensions.

40

For the following lemmas let 𝐻 = (𝑋,𝑌) be a hypergraph. Let 𝑦 be a hyperedge with

vertices {𝑑1, . . . , 𝑑𝑠}, which will be either added to or removed from 𝐻. Let 𝑑𝑖 be one

of the vertices in 𝑦 with a minimum 𝜅 value, so 𝜅 [𝑑𝑖] ≤ 𝜅 [𝑑 𝑗] for all 1 ≤ 𝑗 ≤ 𝑠. Let

𝜅′ represent the nucleus decomposition values corresponding to 𝐻′ = (𝑋,𝑌 ∪ {𝑦}), and 𝜅

represent the original.

Lemma 3.1. For all 𝑥 ∈ 𝑋 , |𝜅′[𝑥] − 𝜅 [𝑥] | ≤ 1.

Lemma 3.2. If 𝜅 [𝑑 𝑗] ≠ 𝜅 [𝑑𝑖] then 𝜅′[𝑑 𝑗] = 𝜅 [𝑑 𝑗].

Lemma 3.3. 𝐻′[{𝑥 ∈ 𝑋 : 𝜅′[𝑥] ≠ 𝜅 [𝑥]}] is connected.

Lemma 3.4. Let 𝑋 = 𝐻 [{𝑥 ∈ 𝑋 : 𝜅 [𝑥] = 𝜅 [𝑑𝑖]}]. Only vertices 𝑐 in the same connected

component as 𝑑𝑖 in 𝑋 may have 𝜅′[𝑐] ≠ 𝜅 [𝑐].

The proofs follow well-known subcore result proofs, i.e., Theorems 1–4 [224], noting

that hyperedge changes only impact the degree by one and hypergraph 𝑘-cores are defined

by minimum degree of all vertices in a hyperedge. These lemmas are crucial for converting

graph core algorithms to hypergraph algorithms: they show that on any edge change, the

𝜅 values can only change by one, and the change will occur within a subcore, a connected

region of the hypergraph where all vertices have the same initial 𝜅 value. This enables

ignoring certain edges, reducing the total work.

3.3 Maintaining Nucleus Decompositions

The goal is to maintain the nucleus decomposition values, 𝜅, under the dynamic graph

stream, S. We split this problem into two parts: first, we maintain the (𝑟, 𝑠)-hypergraph 𝐻,

an intermediate structure that represents 𝑟- and 𝑠-cliques in 𝐺; next, we use 𝐻 to maintain

𝜅, which are hypergraph coreness values.

41

3.3.1 Maintaining 𝐻 on a Changing Graph

The algorithm proceeds as follows. Consider each edge in the stream and determine

whether that edge creates or deletes 𝑠-cliques, by enumerating all 𝑠-cliques that involve

both endpoints. For each creation or deletion, all internal 𝑟-cliques will be impacted; their

S-degree will change by one and a hyperedge will be created or removed. When the change

is an edge deletion, the graph is updated after enumerating impacted hyperedges, capturing

any 𝑠-cliques it was part of. For insertions, the update is before.

Correctness Suppose 𝑦 is an 𝑠-clique. Under any ordering, there will always be a final

edge that creates 𝑦; before that edge, no internal 𝑟-cliques are connected through 𝑦. Af-

ter that edge, all internal 𝑟-cliques have a connection. The same applies to the first edge

removal of 𝑦: post removal the corresponding hyperedge also no longer exists.

Complexity We consider the worst case complexity for processing any edge update. Con-

sider the update 〈{𝑢, 𝑣},±〉 where 𝐶𝑢,𝑣 denotes the number of common neighbors between

𝑢 and 𝑣. Note 𝐶𝑢,𝑣 = 𝑂 (|𝑉 |). The number of potential 𝑠-cliques we enumerate is
(𝐶𝑢,𝑣

𝑠−2
)

each of which contain
(𝑠
𝑟

)
𝑟-cliques, resulting in a runtime per edge of

𝑂

(
𝑇𝐺 + 𝑇𝐶𝑁 +

(𝐶𝑢,𝑣

𝑠−2
) ((𝑠−2

2
)
𝑇𝐶 +

(𝑠
𝑟

)
(𝑇𝐻 +𝑂 (𝑓))

))
,

where 𝑇𝐺 is the complexity of updating the graph, 𝑇𝐶𝑁 of finding common neighbors, 𝑇𝐶

of querying an edge, and 𝑇𝐻 of updating the hypergraph. The runtime is dependent on the

existence of large cliques in the graph, and it is an open problem to find any nucleus decom-

position strategy–maintenance or otherwise–to handle these cases efficiently. Note that for

low nuclei such as cores, trusses, (2, 4), and (3, 4) our algorithms and implementations are

efficient even with large cliques and the complexity matches that of core, truss, and nucleus

decompositions. By Theorem 3.1, we cannot expect to do better.

This approach can be extended to support arbitrary sized batches, by processing dele-

42

tions first and insertions second.

3.3.2 Computing 𝜅

To determine the final nucleus decomposition values using 𝐻, we can use any hypergraph

𝑘-core maintenance algorithm. Applying Theorem 3.3, the resulting cores will be nu-

clei. Finally, Lemma 3.1-Lemma 3.4 provide the connection between hypergraph cores

and graph cores necessary enabling graph core algorithms to be directly used.

For our implementation, building on the two state-of-the-art incremental and decre-

mental core maintenance algorithms, namely traversal [224] and order-based [274], we

developed two new hypergraph 𝑘-core maintenance algorithms: traversal and order. At a

high level, traversal begins at the inserted edge and performs a depth-first search. It elim-

inates vertices from consideration that are not in the subcore or cannot have their coreness

change. The decisions are made by evaluating the maximum possible degree. order simu-

lates a sequential peeling process and maintains an order in which vertices could be peeled,

using the order to skip vertices. The order is maintained based on subcores.

We only describe in detail algorithm changes to operate on hypergraphs. We use the

notation from [224] and [274], respectively. In each algorithm, the decisions to follow an

edge or not needs to change to consider multiple neighbors in a hyperedge.

First, we introduce the hypergraph maximum-core degree (MCD) and hypergraph pure-

core degree (PCD). PCD is used for the two-hop traversal variant [224], and MCD is used

in both the traversal algorithm and the decremental order-based algorithm [274].

Definition 3.1 (Hypergraph MCD). Given 𝐻 and vertex 𝑢,

MCD(𝑢) = |{𝑒 ∈ Γ𝐻 (𝑢) : ∀𝑣 ∈ 𝑒 \ {𝑢}, 𝜅 [𝑣] ≥ 𝜅 [𝑢]}|.

Definition 3.2 (Hypergraph PCD). PCD(𝑢) = |{𝑒 ∈ Γ𝐻 (𝑢) : ∀𝑣 ∈ 𝑒 \ {𝑢}, 𝜅 [𝑣] > 𝜅 [𝑢] ∨

(𝜅 [𝑢] = 𝜅 [𝑣] ∧MCD(𝑣) > 𝜅 [𝑢])}|.

For traversal, MCD and PCD are maintained by exploring the one and two hop neigh-

43

Table 3.1: The graphs used for our experiments.

Units: Millions # Cliques

Graph Type |𝑉 | |𝐸 | 3 4

DBLP [162] temporal 1.82 8.34 27.1 600
WikiConflict [37] temporal 0.12 2.03 13.8 63.3
Google [107] static 0.88 4.32 13.1 39.9
YouTube [191] temporal 3.22 9.38 10.5 29.1
Facebook [255] temporal 0.06 0.82 3.39 13.3
Gowalla [47] static 0.20 0.95 2.13 6.09
Patents [158] static 3.77 16.5 4.23 3.50

borhoods around an edge. Additional checks are added to prevent repeatedly evicting hy-

peredges and traversal decisions remain based on the hypergraph MCD and PCD.

For order, each hyperedge internally has an order. The degree counters (deg+, deg∗)

only track the first internal vertex per hyperedge and with an order movement (third case

in [274]) the vertices in a hyperedge are all re-ordered preserving their internal order.

Our approach does not preclude using fully dynamic batch algorithms, although for

simplicity they are not considered here. Hypergraph core batches can be applied after

all hyperedge changes have been made, either for a batch of edge updates or for a single

edge update. In particular, the hypergraph core algorithms operate on a hyperedge stream,

implicitly constructed while maintaining 𝐻.

3.4 Experiments and Results

In this section we describe our experiments and results.

3.4.1 Experiments

Datasets We evaluated on real-world graphs, shown in Table 3.1. We evaluated using

four temporal graphs, which consist of ordered insertions, and three static graphs, each

randomly ordered to simulate a stream. We remove multiedges and self loops and treat all

graphs as unweighted and undirected. Our graphs represent social networks at the scale

44

Table 3.2: Edges before reaching the static runtime.

truss (3, 4)
Graph Static (s) Edges Static (s) Edges

DBLP 28.4 137k 1223.7 182k
WikiConflict 19.4 41.8k 301.3 85.2k
Google 11.4 9.6k 56.2 5.51k
YouTube 111.9 529k 692.7 453k
Facebook 3.6 12.8k 26.6 12.1k
Gowalla 3.6 6.86k 20.4 4.03k
Patents 36.5 452k 38.8 209k

existing static nucleus algorithms are run.

Focus on Higher-Order Nuclei Our experiments and datasets focus on approaches that

extend to higher nuclei, such as (2, 4) and (3, 4). These have been shown to provide non-

linear hierarchies when cores, and trusses only provide a single, funnel-shaped densest

region hierarchy [223]. Extending any nucleus approach efficiently to (𝑟, 5), (𝑟, 6), and

higher will likely involve approximations. Future work could place approximation-derived

weighted hyperedges into our unified framework. We do not show deletions as they are

bounded (Theorem 3.2.)

Implementation We implemented our algorithms in C++17 and compiled with GCC

10.1.0 and -O3. We used Abseil flat hash maps with vectors to store both the dynamic

graph and hypergraph. All data points are the average of a run of five independent tri-

als and all times include memory allocations. Our experiments were run on Intel Xeon

E5-2683 v4 CPUs with 512 GB main memory and dual sockets. Memory is measured

using malloc count. We implemented order with an order-statistic treap and a binary

heap. All experiments use order, unless explicitly testing traversal. For baselines, we use

nd [223] and DyTruss [122]. [273] did not have an available implementation.

45

te
m

p
o
ra

l
o
rd

e
r

ra
n
d
o
m

 o
rd

e
r

1 20 40 60 80 100

0.01

0.10

1.00

10.00

0.01

0.10

1.00

10.00

Percent of Edges in YouTube

A
v
g
.
In

s
e
rt

io
n
 T

im
e
 (

m
s
) core truss (2,4) (3,4)

Figure 3.4: Average insertion latency of YouTube at points in time ordered either tempo-
rally or randomly. As is standard practice, the average per-edge runtime is calculated from
batches based on various percentages of the full stream data. The graph is pre-loaded to
|𝐸 | ×% − 10k edges, and then the average per-edge time for the next 10k edges is shown.

m
e
a
n

s
td

d
e
v

C
V

9 188 (20%) 375 (40%) 563 (60%) 750 (80%) 938

9 188 (20%) 375 (40%) 563 (60%) 750 (80%) 938

9 188 (20%) 375 (40%) 563 (60%) 750 (80%) 938

1e−02

1e−01

1e+00

1e+01

1e+02

1e−03
1e−02
1e−01
1e+00
1e+01
1e+02
1e+03

0.1

1.0

10.0

100.0

Batches in YouTube (in temporal order)

R
a

ti
o

T
im

e
 (

m
s
)

T
im

e
 (

m
s
) core truss (2,4) (3,4)

Figure 3.5: Standard statistics for runtimes within each non-overlapping 10k batch in
YouTube, ordered temporally. Lines are smoothing curves of per-edge means, standard
deviations, and coefficients of variance within each batch. Batches start with edges S10k

1
and end with edges S |𝐸 ||𝐸 |−10k. Also, Figure 3.5 shows all the batches as run through the
system, not just 10k edges at particular percentages of the full stream. Compare this with
the temporal order in Figure 3.4 (top). Unlike choosing only a few arbitrary 10k batches,
using all the batches shows a clear upward trend for all nuclei.

46

DBLP WikiConflict Google YouTube Facebook Gowalla Patents

c
o
re

tr
u
s
s

(2
,4

)
(3

,4
)

1e
−0

5
1e

−0
4

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
−0

5
1e

−0
4

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
−0

5
1e

−0
4

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
−0

5
1e

−0
4

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
−0

5
1e

−0
4

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
−0

5
1e

−0
4

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

1e
−0

5
1e

−0
4

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3
1e

+0
4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Time (sec)

D
e
n
s
it
y

Alg. traversal order

Figure 3.6: Distributions showing variability and latency. The black line indicates fastest static implementation. In each case, order is a
better choice than traversal, as the tails for traversal extend farther and the mean is lower for order. For all algorithms the tail is long,
as expected from Theorem 3.1. Future work on cores, trusses, or any nuclei maintenance algorithm should explicitly focus on reducing
long tails.

47

Experiments and goals We have two experimental goals.

Goal 3.1. Experimentally determine whether our algorithm has low enough latency with

high enough throughput for real use cases.

Goal 3.2. Determine whether our approach removes the need to develop specialized nuclei

maintenance algorithms.

First, we perform four experiments to address Goal 3.1.

Experiment 3.1. We measure the average per-edge runtime for inserting at various points

in the stream, a common evaluation for dynamic algorithms. We insert 10k edges. See

Figures 3.4–3.5.

Experiment 3.2. We measure how many edges are processed, starting from the last edge

inserted into a graph and working backwards, before the latency of our algorithm crosses

the run-time of recomputing from scratch. See Table 3.2.

Experiment 3.3. We report per-edge runtime distributions and compare to re-computing

from scratch. See Figure 3.6.

Experiment 3.4. We measure the memory used by our algorithm, both when maintain-

ing the entire hypergraph 𝐻 in memory and when computing it on-demand as a virtual

hypergraph. See Figure 3.7. We report the computational overhead of this approach in

Figure 3.8.

To address Goal 3.2, we introduce two more experiments.

Experiment 3.5. We measure the fraction of time spent maintaining 𝑘-cores, maintaining

𝐻, and other processing.

Experiment 3.6. We compare our algorithm’s average runtimes with both traversal and

order (2, 3)-nucleus along with the publicly released truss maintenance implementation,

DyTruss [122]. DyTruss is only released as a binary, and instead of running it edge-by-

edge we ran it with 10 edges at a time to mitigate its startup inefficiencies.

48

c
o

re
tr

u
s
s

(2
,4

)
(3

,4
)

DBLP WikiConflict Google YouTube Facebook Gowalla Patents

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

M
e
m

o
ry

 U
s
e
d
 (

M
iB

)

hypergraph virtual−hypergraph static baseline (nd[28])

Figure 3.7: Total memory use is well within a modern server’s memory. We store graphs in
hash tables with 64-bit vertex IDs. Future work may benefit from memory optimizations.

H
v
ir

tu
a
l−

H

1e
−0

5

1e
−0

4

1e
−0

3

1e
−0

2

1e
−0

1

1e
+0

0

1e
+0

1

0

2000

4000

0

2000

4000

Time (sec)

C
o
u
n
t

Average: 0.014 ms

Average: 0.22 ms

Figure 3.8: Virtual-H shows the latency impact on Gowalla of not storing 𝐻 and computing
its edges on-demand for a memory intensive case with (3, 4) nuclei. The tail becomes
longer yet many results can still be returned quickly.

49

c
o

re
tr

u
s
s

(2
,4

)
(3

,4
)

DBLP WikiConflict Google YouTube Facebook Gowalla Patents

0

1

0

1

0

1

0

1

F
ra

c
ti
o
n

maintaining hypergraph maintaining k−cores other

Figure 3.9: Almost all time is spent maintaining the hypercore instead of maintaining the
hypergraph itself, showing an algorithmic focus on cores is important.

DBLP WikiConflict Google YouTube Facebook Gowalla Patents

20 40 60 80 10
0 20 40 60 80 10

0 20 40 60 80 10
0 20 40 60 80 10

0 20 40 60 80 10
0 20 40 60 80 10

0 20 40 60 80 10
0

1e−03

1e−02

1e−01

1e+00

1e+01

1e+02

Percent of Edges in Graph After Insertions

A
v
g
.
In

s
e
rt

io
n
 T

im
e
 (

m
s
)

DyTruss[14] traversal truss order truss

Figure 3.10: Comparison of two variants of our unified framework (order and traversal)
against DyTruss [122] for trusses. Triangles indicate traversal-based, circles order-based.

50

3.4.2 Experimental Results

We report on Experiments 3.1-3.4, addressing Goal 3.1. From Figure 3.4–3.6, at all scales

and for every edge and graph, our algorithm returns with a latency lower than the baseline

of re-computing from scratch. We show temporally ordered graphs have a similar scalabil-

ity with with randomly ordered graphs, similar to results on 𝑘-cores [274]. Furthermore,

we show it is better to report distributions for all batches (Figure 3.5); randomly ordering

may miss inherent locality (dips between 20% and 40% in Figure 3.5), and a few sample

points may miss trends. We show the high variance is not only within batches but among

them, with very infrequent but impactful long tails. We achieve maximum improvements of

between 8.2×104 and 1.9×108 and average improvements between 4.3×104 and 8.7×107

across the tested graphs. For (3, 4) nuclei, the average improvement is 1.7× 107. Table 3.2

shows our algorithm sustains edge-per-second rates that are likely beyond real-world up-

date rates for medium-sized graphs, such as corporate email graphs. Furthermore, we are

computationally bounded for high 𝑟 and 𝑠 nuclei, and so our memory consumption, shown

in Figure 3.7 (without a virtual hypergraph) is well within a standard server’s memory. As

such, we identify this approach is suitable for use as a maintenance algorithm.

The virtual hypergraph memory optimization enables a tradeoff between low latencies

and memory constraints: as shown in Figure 3.8, it is around 15× slower on average for

Gowalla, has worse long tails, yet stays below re-computing and uses asymptotically tight

memory. Hybrid approaches may be an avenue for scaling to very large graphs—especially

if coupled with approximations.

Importantly, we show the distributions are not normal and as such we demonstrate

reporting only the average is inadequate. This holds even for cores and truss communities.

Future algorithms should address long tails instead of solely focusing on averages.

Next, we report on Experiments 3.5-3.6, addressing Goal 3.2. One key outcome of

our algorithm is that it reduces the computation of nuclei, including trusses, to computing

𝑘-cores on 𝐻. For this to be useful, we need two properties: first, 𝐻 maintenance itself

51

cannot add a significant overhead. Figure 3.9 shows the runtime is dominated by main-

taining 𝑘-cores. Second, algorithmic improvements for cores need to apply to other nuclei.

Figure 3.10 shows that traversal and the traversal-based DyTruss [122] have similar char-

acteristics, for example consider WikiConflict. Where they are dissimilar the (2, 3)

hypergraph is much smaller (see Table 3.1).

Our results demonstrate that algorithmic improvements to core maintenance directly

carry through our nucleus decomposition approach, removing the need for manually port-

ing results between cores and trusses.

3.4.3 Related Work and Future Directions

To the best of our knowledge, we provide the first nucleus maintenance algorithm on dy-

namic streams. Two special cases, computing 𝑘-cores and 𝑘-trusses, have seen several

maintenance algorithms: [224, 164] reduces work by comparing with existing core num-

bers and [274] maintains a decomposition order. [121] operates in the parallel batch setting

and identifies independent edges to process concurrently using specialized trees. [122] in-

troduces 𝑘-truss communities and provides a traversal based incremental algorithm. [273]

presents an ordering based batch truss maintenance algorithm, shows insertions are un-

bounded, and develops an analysis framework that bounds them. Their implementation

is unavailable, however we outperform [273]’s reported runtimes, on the same processor,

with our order implementation on soc-LiveJournal1 by over 93×.

[226, 171] address cores on bipartite graphs, or hypergraphs where hyperedges can be

broken. [243] presents an approximate hypergraph 𝑘-core maintenance algorithm. Our 𝐻

maintenance has similarities to the maximal clique approach in [55]. Future work could

leverage this within our framework by generalizing nuclei with other dense structures, po-

tentially with sampling or sparsification.

52

3.5 Summary

In this chapter, we studied the problem of maintaining nucleus decompositions on dynami-

cally changing graphs. We proved any locally persistent dynamic algorithm is unbounded,

meaning worst-case runtimes may equal full re-computation even if the output does not

change. We established an equivalence between hypergraph 𝑘-cores and nucleus decompo-

sition, forming the theoretical foundation of our unifying framework. Our approach splits

the problem into two: maintaining a special hypergraph and then maintaining 𝑘-cores on

it. We implemented our unified framework using order and traversal 𝑘-core approaches for

arbitrary (𝑟, 𝑠) values. We can then maintain nuclei with lower latencies than re-computing

from scratch with sufficient throughput to drive real-world uses on medium-sized graphs.

Our work enables interactive use of significantly more interesting and useful nuclei than

only cores or trusses and allows progress in core maintenance to directly impact all nuclei.

53

CHAPTER 4

FROM CORENESS TO CORES

Many practically important graphs from web data, social networks, and related fields are

both large and continuously changing. The problem of maintaining core decompositions

on graphs has been well studied [164, 225, 274, 273]. Existing approaches run in linear

time in the size of the graph, which is theoretically optimal [273], and on many real-world

graphs they maintain decompositions within milliseconds after edge changes. So, is the

problem solved?

Unfortunately, these approaches only address half of the problem of returning a 𝑘-

core[221]. 𝑘-cores are originally defined as connected subgraphs [228]. All of the appli-

cation examples referenced above rely on or use connectivity. A core decomposition, on

the other hand, provides coreness values for every vertex: that is, the largest value such

that a vertex is in a 𝑘-core, but not in a (𝑘 + 1)-core. Prior approaches have either ignored

connectivity (which provides limited, but some insight e.g., [141]) or left the final step of

finding components as a separate process. The main tool to address computing connectivity

on cores, or a core hierarchy, has been independently proposed several times [20, 221, 80,

82] in different contexts, and concurrently developed in [169]. We introduce this index in

the most basic setting, designed for 𝑘-cores on simple undirected graphs, and we call it the

Shell Tree Index (ST-Index). This index supports queries to extract the cores a vertex is in

along with the full core hierarchy of a graph.

Example Problem Consider the problem of managing a social network. First, given a

user, we wish to recommend friends to them that are well connected in their part of the

graph: this is a vertex and coreness query. Second, we want to detect structural changes,

for example sybil attacks [63] from new fake accounts: this is a hierarchy query. Figure 4.1

54

Which dense region is a
well connected vertex in?

When does the core
hierarchy itself change?

Figure 4.1: The core hierarchy for the LiveJournal social network graph. Tracking dense
regions behavior over time is important for understanding structural changes, and extracting
the vertices within a dense region is important for almost all known 𝑘-core applications.

shows the core hierarchy of the LiveJournal graph [267] and how far apart different dense

regions are. For both query examples, we want results in tens of milliseconds to either

prepare a webpage or mitigate an emerging attack.

In this example scenario, a state-of-the-art core decomposition system is put in place,

which provides coreness updates quickly after graph changes. The two goals above require

information about specific cores. If certain vertices achieve higher coreness values, this

does not inform whether a new region is created. Furthermore, unless there is only one

dense region, it will not enable useful recommendations. Instead, we need systems and

algorithms that can quickly and effectively return cores themselves along with their full

hierarchies.

Approach The ST-Index builds on the laminar nature of cores. For 𝑘′ < 𝑘 , every 𝑘-core

is contained within some 𝑘′-core, naturally forming a tree. Each node in this tree corre-

sponds to the shell of the core, that is vertices which are not in any higher core. Coupled

with a reverse map, a core can be efficiently returned by traversing the subtree staying

below the desired 𝑘 value. The core hierarchy is the tree.

We build the tree by first identifying regions of the graph where the cores are the same,

55

known as subcores, and then forming a directed acyclic graph (DAG) with each subcore as

a node. Starting from the highest 𝑘 values, we process nodes in the DAG upwards, merging

and moving them to form a tree.

The only known prior maintenance approach, operating for attributed graphs and used

as part of solving community search, is given in [80]. We first port this maintenance ap-

proach to the case of 𝑘-cores on standard graphs and use that as our edge-by-edge baseline.

Given an edge change, it maintains the ST-Index by either merging or splitting nodes on

paths to the root. Concurrent with this work, [169] builds on [80]’s approach by batching

operations on the tree.

In real-world graphs there is significant variance in the rate of change. As such, batch

dynamic algorithms that can reduce the total work when operating on batches are de-

sired [176, 60]. We provide a batch dynamic algorithm to maintain cores themselves,

starting from core decompositions. We do this by maintaining the subcore DAG used dur-

ing construction. After a batch of changes, we revisit each node in the DAG that was

modified and re-compute any subcore changes. Any DAG changes are then pushed into the

tree, temporarily turning the tree back into a DAG. We then traverse from the sink upwards,

correcting the tree.

Contributions In addition to bringing the ST-Index from the community search domain

into the direct, 𝑘-core domain, we prove efficiency properties on the ST-Index. Our main

contributions are:

1. A subcore DAG based ST-Index construction algorithm

2. A batch dynamic algorithm to maintain ST-Index that reduces the work of edge-by-

edge updates

3. An experimental evaluation on real-world graphs that show with both our edge-by-

edge and batch algorithms, ST-Index is suitable for interactive use

56

The remainder of this chapter is structured as follows. In § 4.1 we describe the related

work. In § 4.2 we formally describe our model and problem. In § 4.3 we present ST-Index.

In § 4.4 we provide our algorithm to compute ST-Index from scratch. In § 4.5 we explain

how to maintain ST-Index for dynamic graphs and introduce our batch algorithm. In § 4.6

we experimentally evaluate our implementations, and in § 4.7 we conclude.

4.1 Related Work

𝑘-cores were introduced independently in [228, 183]. [183] additionally provided a peeling

algorithm that uses bucketing to run in 𝑂 (𝑛 + 𝑚). The main strategy for computing 𝑘-

cores has remained roughly the same since then: iteratively peeling the graph, or excluding

vertices with too low of degrees, until all degrees are 𝑘 .

For maintenance, [164] and [225] independently proposed Traversal, which limits con-

sideration of vertices around an edge change if they provably cannot update values. [225]

defines the notion of subcores and purecores, variants of which are used in all known main-

tenance algorithms to limit considered subgraphs. [274] proposed Order, which is the

current state-of-the-art and maintains a peeling order, instead of coreness values directly,

using an order-statistic treap and a heap. Parallel approaches have relied on identifying a

set of vertices that can be independently peeled [131, 6, 121, 14]. [19, 273] provide batch

algorithms that reduce work as multiple edges are processed simultaneously.

All of the above focus on computing the coreness values for vertices. In fact, the lack

of focus on connectivity has, in some cases, resulted in later work redefining cores to not

include connectivity (e.g., [180]) which limits their usefulness.

Numerous other targets, similar to cores, have been proposed [180]. [71, 275] develop

weighted extensions to cores, [170] uses core concepts to reinforce connections within net-

works, [96] proposes notions of cores for multilayer networks, and [271] ensures vertices in

core-like regions are also relatively cohesive given their neighbors. In cases where the cores

are used for downstream algorithms, returning the actual (connected) vertices is identified

57

as crucial and algorithms are built to support such queries [171].

Community search [239, 53] is a more general problem for returning a connected set

of vertices in a community based on a seed set. The community is commonly defined

with a minimum degree measure[81]. In this case, if the query consists of a single ver-

tex, community search can return exactly a core. For this reason, we pull from the field

of community search to develop ST-Index. [20] proposed the first known shell tree in-

dex. It does not support efficient queries, as it creates additional vertices for each coreness

level that must be addressed. [221] identifies the same problem that we address—cores

require connectivity—and proposes a shell tree-like index with a static construction in the

more general nuclei framework, but leaves out maintenance. [80] operates on attributed

graphs and extends [221]’s approach and [20]’s index with incremental and decremental

algorithms, but without batch algorithms. We port this approach to the problem of cores

and use this as our baseline. Concurrent with this work, [169] provides a batch algorithm

that is based on [80] and batches changes to the tree directly, without the use of a DAG.

4.2 Preliminaries

A graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝑉 and set of edges 𝐸 . An edge 𝑒 ∈ 𝐸 represents the

connection between two distinct vertices 𝑢, 𝑣 ∈ 𝑉 , 𝑒 = {𝑢, 𝑣}. We denote |𝑉 | by 𝑛 and |𝐸 |

by 𝑚.

We use Γ(𝑣) to represent the neighboring edges of 𝑣 ∈ 𝑉 . The degree of 𝑣 ∈ 𝑉

is |Γ(𝑣) |. For directed graphs, Γin represents edges ending at the given vertex and Γout

represents edges leaving a vertex. If the graph is ambiguous, we use Γ𝐺 for graph 𝐺. The

neighborhood of a vertex set 𝑆 ⊆ 𝑉 , Γ(𝑆), represents the vertices and edges connected to

𝑆, that is it is the subgraph induced by 𝑆 and all neighbors of vertices in 𝑆.

58

4.2.1 Dynamic Graph Model

We consider graphs that are changing over time, known as dynamic graphs. An edge

change is a tuple 〈𝑐, 𝑣, 𝑒〉 consisting of a direction 𝑐, a vertex 𝑣 ∈ 𝑉 , and an edge 𝑒 ∈ 𝐸 . A

dynamic graph is then an infinite turnstile stream of edge changes S, where time is the po-

sition in the stream. At any point in time an undirected graph𝐺 𝑡 can be formed by applying

all edge changes until 𝑡, starting from an empty graph.

In this model, the timestamp of edges received is not preserved and not used by the

algorithm. An algorithm that does take into consideration timestamps is called a temporal

algorithm, and can either be dynamic or static.

Definition 4.1. Let A be a graph algorithm with output A(𝐺). Then AΔ is a dynamic

graph algorithm if, for some times 𝑡 and 𝑡′, with 𝑡 < 𝑡′,

AΔ

(
𝐺 𝑡 ,A(𝐺 𝑡),A𝑡

Δ,S[𝑡, 𝑡
′]
)
=

〈
A(𝐺 𝑡 ′),A𝑡 ′

Δ

〉
,

whereA𝑡
Δ

contains algorithm state at 𝑡 and S[𝑡, 𝑡′] are the edge changes in S from 𝑡 + 1 to

𝑡′.

We call an incremental algorithm a dynamic graph algorithm which can only handle

edge insertions and a decremental algorithm one which can only handle edge deletions.

A batch dynamic algorithm can handle 𝑡′ > 𝑡 + 1. Our batch algorithm, described in

Section 4.5, has an additional state bound by the size of the graph.

4.2.2 Cores

We provide a brief background on 𝑘-cores.

Definition 4.2. Let 𝐺 be a graph and 𝑘 ∈ N. A 𝑘-core in 𝐺 is a set of vertices 𝑉 ′ which

induce a subgraph 𝐾 = (𝑉 ′, 𝐸′) such that: (1) 𝑉 ′ is maximal in 𝐺; (2) 𝐾 is connected; and

(3) the minimum degree is at least 𝑘 , min𝑣∈𝑉 ′ |Γ𝐾 (𝑣) | ≥ 𝑘 .

59

2-core

3-core

1-core

3-core

1

4

2

3

5 6

7

10

8

9

Figure 4.2: An example graph and its cores. Note that there are two separate 3-cores.

Figure 4.2 shows an example graph and its cores. There are two separate 𝑘 = 3 cores,

one with vertices 1 through 4 and the other with vertices 7 through 10. If all vertices with

less than a degree 3 are iteratively removed, the remaining graph consists of those two

separate connected components.

Definition 4.3. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑣 ∈ 𝑉 . The coreness of 𝑣, denoted 𝜅 [𝑣], is

the value 𝑘 such that 𝑣 is in a 𝑘-core but not in a (𝑘 + 1)-core.

Definition 4.4. Let 𝐺 = (𝑉, 𝐸) be a graph. The 𝑘-core number of 𝐺, denoted 𝜌𝐺 and

shortened to 𝜌, is given by 𝜌 = max𝑣∈𝑉 𝜅 [𝑣].

4.2.3 Problem Statement

We consider the problem of efficiently supporting core and coreness queries on a dynamic

graph stream. Let 𝑘 ∈ N and 𝑢 ∈ 𝑉 .

• The coreness query K(𝑢) returns 𝜅 [𝑢].

• The core query C(𝑢, 𝑘) returns the vertices of the 𝑘-core subgraph that contains 𝑢.

• The hierarchy query H returns the hierarchical structure of the cores as a tree, with

the root as the 0-core

60

Prior work in the context of cores has focused only on supporting K queries on dynamic

graphs. Unfortunately, this prevents many of the applications of 𝑘-cores which rely on

extracting dense regions of a graph.

4.3 Shell Tree Index

In this section we present the Shell Tree Index, ST-Index, which is able to efficiently return

cores for different vertices: its runtime is asymptotically the size of the result and its space

is linear in the number of vertices. This index has been independently developed several

times [20, 221, 80, 82, 169] in different contexts. We present the index here for complete-

ness. We will address how to construct the index in Section 4.4 and how to maintain it in

Section 4.5.

K(𝑢) queries, or coreness queries, can be efficiently returned using an array of size 𝑛.

We therefore focus on C andH queries.

4.3.1 Naive Index

To motivate the use of ST-Index, we start by introducing a naive index which stores all of

the cores for each vertex, taking 𝑂 (𝜌𝑛 + 𝑛2) space, using a laminar structure of cores. We

then present an initial optimization that reduces the storage to 𝑂 (𝜌𝑛) by taking advantage

of overlap in cores, but does not use the laminar structure. However, for many real-world

graphs 𝜌 is in the thousands, and so the space complexity remains too high. We then

introduce a space efficient Shell Tree Index, which takes advantage of both properties of

cores to achieve 𝑂 (𝑛) space.

In this section we present a naive index, N-Index, which runs in optimal time but uses

𝑂 (𝜌𝑛 + 𝑛2) space. To efficiently support C(𝑢, 𝑘) queries, we need to return the vertices in

the 𝑘-core that include 𝑣. We use the following property of cores.

Lemma 4.1 ([225]). Cores form a laminar family, that is every pair of cores are either

disjoint or one is contained in the other.

61

1Requested
Vertex (u) 2 3 4 5 6

Requested
Core (k)

1 2 3

6 10 9 8 7 5Vertices in u's
k-core

7 8 9 10

4 3 2 1

1 2

56

Figure 4.3: The Naive Index, N-Index, corresponding to Figure 4.2, used to return C(𝑢, 𝑘)
queries. Only the second and third levels for the highlighted vertices 2 and 5 are shown,
but every vertex needs its potentially unique core funnel. The colored underlines show how
the cores should be read through the funnel.

Proof. We want to show that for every two cores 𝐾1 and 𝐾2, 𝐾1 ∩ 𝐾2 is exactly one of ∅,

𝐾1, or 𝐾2.

Let 𝐾1 and 𝐾2 be two cores of 𝐺, with corresponding 𝑘 values 𝑘1 and 𝑘2. Suppose

𝐾1 ∩ 𝐾2 ≠ ∅, implying 𝐾1 is connected to 𝐾2. Note that 𝑘1 ≠ 𝑘2, otherwise 𝐾1 ∪ 𝐾2 is a

𝑘1-core, invalidating maximality. Let 𝑘1 < 𝑘2. Suppose ∃𝑣 ∈ 𝐾2 such that 𝑣 ∉ 𝐾1. 𝑣 must

be connected in 𝐾2, and so there exists a path from 𝐾1 to 𝑣 with minimum degree at least

𝑘2. Let 𝐾′1 be a subgraph that includes 𝐾1 and the path to 𝑣. Then, 𝐾′1 is a 𝑘1-core and

larger than 𝐾1, invalidating maximality. �

A visual representation of this index is given in Figure 4.3. We can now construct the

index as follows. Build a three-level structure, with the first level corresponding to vertices

and the second level corresponding to coreness values. By Lemma 4.1, we know that cores

form a laminar family, and so for a given vertex the core hierarchy will consist only of

smaller and smaller core regions. We call this a core funnel. We proceed by ordering

vertices by their coreness from smallest to largest in the third level. Note that this funnel

may be unique for each vertex, resulting in 𝑂 (𝑛2) storage.

The algorithm to return C(𝑢, 𝑘) in N-Index is straightforward: follow the top level

pointer (𝑢) and second level pointer (𝑘) to get a position in the third level. Then, read out

62

the resulting vertices until the end of the third level list for 𝑢. The runtime is clearly the

size of the output, and so it is efficient.

Lemma 4.2. The space required for N-Index is 𝑂 (𝜌𝑛 + 𝑛2).

Proof. The first level is size 𝑛. Every vertex may be part of a unique core funnel, and so

the third level may contain 𝑛 elements. The second level may contain up to 𝜌 pointers if

the vertex has maximum coreness. �

The problem with the N-Index is that the space required is too large, and importantly

it ignores the relationship between vertices in the first level. We present a natural improve-

ment next, that takes advantage of the overlap between cores for vertices.

4.3.2 Compressed Naive Index

In this section we provide a compressed naive index CN-Index, and improvement on the

N-Index, that takes advantage of multiple vertices being involved in the same core. The

index is modified so that what was the third level now contains cores that are shared across

the whole graph. An example of this index can be found in Figure 4.4. In this case, the

running time again remains efficient: for a given C(𝑢, 𝑘), the first and second level are

accessed to get the core identifier. Then, the identifier is used to find and return the values

exactly in the core.

Lemma 4.3. CN-Index takes 𝑂 (𝜌𝑛) space.

Proof. The first level contains 𝑛 elements and the second level up to 𝜌, resulting in 𝑂 (𝜌𝑛).

The third level has up to 𝑛 elements per row, and so again takes 𝑂 (𝜌𝑛). �

While this is an improvement on N-Index, it does not take advantage of the laminar

nature of cores. Furthermore, on many real world graphs 𝜌 is in the thousands, making this

approach untenable.

63

1Requested
Vertex (u) 2 3 4 5 6

Requested
Core (k) A

B

C

k=1 cores

k=2 cores

k=3 cores

A

B

C

1

2

3

7 8 9 10

A

B

C

A

B

C

A

B

A A

B

D

A

B

D

A

B

D

A

B

D

1 2 3 4 5 6A 7 8 9 10

1 2 3B 4 5 7 8 9 10

1 2C 3 4 7 8D 9 10

Figure 4.4: The Compressed Naive Index, CN-Index, which removes repeated vertices in
the third level, but does not take advantage of the laminar nature of cores.

4.3.3 Shell Tree Index

Definition 4.5. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝐾 ⊆ 𝑉 a 𝑘-core in 𝐺 for some 𝑘 ∈ N. Then

𝑆 is a 𝑘-shell if 𝑆 = {𝑣 ∈ 𝐾 : 𝜅 [𝑣] = 𝑘}.

Note that the shell is disconnected, however it is a subset of a connected core. This

means that the traditional approach of using coreness values to compute the shell does not

work. We address shell computation later in Section 4.4, using subcores.

A shell tree 𝑇 is at the heart of the ST-Index. We call the vertices of 𝑇 tree nodes, to

distinguish from the vertices in 𝐺. Each node has two additional pieces of data associated

with it: a 𝑘 value and a set of vertices (in𝐺). 𝑇 is built as follows. A root node is made with

𝑘 = 0 and a vertex set of isolated vertices (those with |Γ𝐺 (𝑣) | = 0). Next, nodes are made

in 𝑇 for every 𝑘-shell. Its 𝑘 attribute is set to 𝑘 corresponding to the shell and its vertex list

is set to the vertices in the 𝑘-shell. An edge is created in 𝑇 by linking 𝑘-shells, following

Lemma 4.1. An example shell tree is shown in Figure 4.5. The ST-Index consists of 𝑇 and

a map 𝑀 , mapping 𝑣 ∈ 𝑉 to the appropriate node in 𝑇 .

Lemma 4.4. The shell tree is a directed, rooted tree.

64

6

5

1 2 7 8

vertices

∅0

1

2

33

k

3 4 9 10

legend

Figure 4.5: The shell tree for the graph shown in Figure 4.2. On the left side are the 𝑘-
shell values, and on the right side are the contained vertices. Each directed edge indicates
inclusion of the deeper cores.

Proof. Suppose a tree node 𝑢, corresponding to core 𝐾𝑢 has two in-edges. By definition 4.5,

each parent corresponds to a unique 𝑘-shell. Consider the two corresponding cores, 𝐾1 and

𝐾2. They both include 𝐾𝑢, yet are distinct, and so they have non-trivial overlap contradict-

ing Lemma 4.1. The root is defined with 𝑘 = 0. �

Lemma 4.5. The out-degree of a non-root tree node with no corresponding vertices in the

shell tree can be at most 1.

Proof. Let the tree node with no corresponding vertices be at level 𝑘 > 0 with out-degree

at least 2. Then, there are two distinct cores at 𝑘 + 1 (not necessarily shells), and one core

at 𝑘 . The two cores at 𝑘 + 1 must be disconnected by construction.

However, because the tree node has no corresponding vertices, we know that every

vertex in the 𝑘-core is also in a (𝑘 + 1)-core. Furthermore, the 𝑘-core is connected. Hence,

it is not possible for the two cores at 𝑘 + 1 to be disconnected. �

Lemma 4.6. Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 = |𝑉 |. The number of nodes in the shell

tree is at most 𝑛 + 1 and edges is at most 𝑛.

Proof. By Lemma 4.5, each node in the tree (besides the root) must have at least one vertex.

As there are at most 𝑛 vertices, the size of the tree is at most 𝑛 + 1. By Lemma 4.4, we

know it is a tree, and so with at most 𝑛 + 1 nodes it has at most 𝑛 edges. �

65

4.3.4 Queries on ST-Index

The three queries, K(𝑢), C(𝑢, 𝑘), andH are returned as follows:

• K(𝑢) follows 𝑀 [𝑢] and returns the corresponding 𝑘

• C(𝑢, 𝑘) returns vertices from a tree traversal from 𝑀 [𝑢] staying above level 𝑘

• H returns the full tree with its nodes and attributes directly

4.3.5 Efficiency of ST-Index

We next address the efficiency of queries on ST-Index.

Theorem 4.1. C(𝑢, 𝑘) queries on ST-Index run in 𝑂 (|C(𝑢, 𝑘) |) and correctly return the

𝑘-core containing 𝑢.

Proof. First, we show correctness. Let 𝐶∗ be the core for C(𝑢, 𝑘), that is 𝐶∗ is a 𝑘-core

and 𝑢 ∈ 𝐶∗. The traversal will cover all vertices in the subtree containing 𝑢 at level 𝑘 and

higher. By Lemma 4.1 we know all denser cores are fully contained in the desired 𝑘-core.

By Lemma 4.5, we know that any split will occur in an explicit tree node with vertices in

the resulting shell. So, this split will be captured by the tree traversal. As such, all vertices

in the tree nodes traversed with values 𝑘 or more exactly form the 𝑘-core.

Let down represent higher 𝑘 values in the tree. Next, we show efficiency. Every down-

ward link in the subtree needs to be fully explored, and there are no nodes with overlapping

vertices in the tree. Once a downward traversal occurs, there is no need to check parents.

When traversing upwards, all children except the previous one will be explored down-

wards. In each case every node is visited exactly once and all of its associated vertices are

enumerated once and are part of the returned core.

As ST-Index is a tree, whether to traverse to the parent can be decided based on whether

the parents’ value is lower than 𝑘 . This will result in one additional operation. As such, the

runtime is 𝑂 (|C(𝑢, 𝑘) |) and efficient. �

66

cores A B

D

EI

subcores

C

1
2

3
34

F

J
HG

Figure 4.6: An example graph along with its cores (top) and subcores (bottom). Note that
a core may consist of multiple subcores, and subcores are disjoint.

Theorem 4.2. The ST-Index takes 𝑂 (𝑛) space.

Proof. The ST-Index consists of a map of size 𝑛 between vertices and tree nodes, along

with the shell tree itself. By Lemma 4.6, the tree has at most 𝑛 + 1 nodes and 𝑛 tree edges.

Each tree node may have vertices, but there are no redundant vertices. So, the size is

𝑂 (𝑛 + 𝑛 + 1 + 𝑛 + 𝑛) = 𝑂 (𝑛). �

The shell tree itself contains the hierarchy of cores and shells, and so returning ST-

Index efficiently resolvesH queries.

4.4 Computing the ST-Index

Computing (and maintaining) the ST-Index hinges on building (and maintaining) the shell

tree. We propose a subcore directed acyclic graph, that provides the link between core

decompositions and the shell tree. In this section we describe how to compute the ST-

Index from scratch using the subcore DAG.

This problem is broken into three parts: computing coreness values, subcore DAG, and

the shell tree.

67

Subcore DAG

A B D

EF G

IH

C

J J

H I

Shell Tree

ABCD

FEG

Figure 4.7: The corresponding subcore DAG and shell tree from the example graph in
Figure 4.6.

4.4.1 Computing Coreness Values

Computing coreness values has been well studied on graphs [183, 58]. The most direct

approach, known as peeling, starts by keeping an array of vertex degrees. It then moves

up through coreness values, removing vertices with insufficient degree and recording when

they are removed. This is efficient, running in 𝑂 (𝑛 + 𝑚), when using buckets [183]. We

refer the reader to [180] for a survey.

4.4.2 Computing the Subcore DAG

Next, we introduce the subcore directed acyclic graph (DAG), which is used to bridge

between coreness values and cores.

Definition 4.6. Let 𝐺 be a graph. A subcore is a subgraph 𝐶 such that (1) 𝐶 is maximal

(2) ∀𝑣 ∈ 𝐶, 𝜅 [𝑣] = 𝑘 for some 𝑘 ∈ N and (3) 𝐶 is connected.

Subcores were introduced in [225] to limit the region that may have coreness values

change on graph changes. Figure 4.6 shows an example graph with cores and subcores.

Observation 4.1. Subcores are disjoint, by maximality of cores and property (2), and so

the number of subcores is bound by 𝑛.

68

Algorithm 4.1: Building the subcore DAG.
Input: graph 𝐺 = (𝑉, 𝐸), 𝜅

1 𝐶 ← ∅; 𝐷 ← ∅ ⊲ DAG vertices and edges
2 𝐿 ← [𝑣 : 𝑣 ∈ 𝑉] ⊲ Labels
⊲ Compute the subcores

3 for 𝑣 ∈ 𝑉 do
4 if 𝐿 [𝑣] ≠ 𝑣 then continue
5 𝐶 ← 𝐶 ∪ {𝑣}

⊲ Perform a BFS that stays within 𝜅 levels from 𝑣

6 𝑄 ← Queue(); 𝑄.push(𝑣)
7 while 𝑄 ≠ ∅ do
8 𝑛← 𝑄.pop()
9 for 𝑤 ∈ Γ(𝑛) : 𝐿 [𝑤] ≠ 𝑣 ∧ 𝜅 [𝑤] = 𝜅 [𝑣] do

10 𝑄.push(𝑤)
11 𝐿 [𝑤] = 𝑣
⊲ Produce the DAG edges

12 for 𝑣 ∈ 𝑉 do
13 for 𝑛 ∈ Γ(𝑣) where 𝐿 [𝑣] ≠ 𝐿 [𝑛] do
14 𝐷 ← 𝐷 ∪ {〈𝐿 [𝑣], 𝐿 [𝑛]〉}
15 return DAG=(𝐶, 𝐷)

After breaking cores up into subcores, the glue to link them back together is saved as a

subcore DAG. The subcore DAG is built with a directed edge from every lower 𝑘 subcore to

a strictly higher 𝑘 subcore that it is directly connected to. The subcore DAG from Figure 4.6

and its shell tree is shown in Figure 4.7.

Lemma 4.7. The subcore DAG size is bound by 𝐺.

Proof. Each vertex in the subcore DAG corresponds to a connected subgraph in the graph,

and every edge in the DAG is a directed edge that results from contracting all vertices in

each subcore. Contraction only removes edges and vertices, and no new edges or vertices

are added. �

Observation 4.2. The subcore DAG is not a tree. Consider a 3-clique and a 4-clique,

connected via an edge, and both connected to another vertex. This forms a directed triangle

in the DAG.

The process of building the subcore DAG is shown in Algorithm 4.1. This algorithm

69

performs a breadth-fist search (BFS) for each vertex. The search is constrained to stay

within a 𝜅 level, and DAG edges are emitted on graph edges that leave 𝜅 levels. Efficient

connected components algorithms, e.g., [235], could be used instead.

Lemma 4.8. Algorithm 4.1 runs in 𝑂 (𝑛 + 𝑚).

Proof. From lines 6–11, inside the internal BFS, each vertex will be visited once. Inside,

each edge will be visited once. Finally, the entire BFS will only start from unvisited ver-

tices.

For lines 12–14, each vertex and edge will again be visited, resulting in 𝑂 (𝑛 + 𝑚)

work. �

4.4.3 Building the Shell Tree

Given a subcore DAG and 𝜅 values, we can compute the shell tree. Our algorithm starts

with the DAG and modifies it as it moves from the sinks upwards (towards lower 𝑘 values),

using a max-heap. Each processed vertex: 1) identifies neighbors that are at its 𝜅 level,

and merges itself with them; 2) sets a single node that is an in-neighbor with the closest 𝜅

value as the tree parent; and 3) moves all other in-edges to the identified parent, ensure it

becomes a tree. The details are presented in Algorithm 4.2.

Lemma 4.9. Algorithm 4.2 correctly builds the shell tree.

Proof. We argue that after running Algorithm 4.2, each node will exactly contain the shell.

First, a node needs to contain all connected subcore DAG nodes at the given 𝜅 value. Sec-

ond, it cannot have additional nodes merged with it. The vertices are processed level by

level following the heap order. We argue correctness via induction on 𝜅. At the highest 𝜅

level, by the DAG properties, we know the tree nodes connected to the sink are shells and

valid. Now, consider a tree node with 𝜅 and assume nodes at 𝜅′ > 𝜅 are valid. The node

is formed by merging DAG nodes at the same level, which are all connected. Any con-

nectivity that is not at level 𝜅 will be preserved by moving edges to the node’s parent. By

70

Algorithm 4.2: Constructing the shell tree.
Input: DAG=(𝐶, 𝐷), 𝜅

1 𝑇 = (𝑁, 𝐸) ← DAG
2 𝑆 ← ∅
3 𝐻 ← Heap() ⊲ Empty Heap
4 for sink 𝑠 ∈ 𝑁 do
5 𝐻.push(𝜅 [𝑠], 𝑠)
6 while 𝐻 ≠ do
7 𝑣 ← 𝐻.pop()
8 if 𝑣 ∈ 𝑆 then continue
9 𝑆 ← 𝑆 ∪ {𝑣}

⊲ Merge with neighbors at same level
10 while ∃𝑛 ∈ Γ(𝑣) : 𝜅 [𝑛] = 𝜅 [𝑣] do
11 Merge(𝑣, 𝑛)
12 𝑆 ← 𝑆 ∪ {𝑛}

⊲ Move all remaining and new in neighbors
13 𝑡 ← arg max𝑛∈Γin (𝑣) 𝜅 [𝑛]
14 for 𝑛 ∈ Γin(𝑣) do
15 if 𝑛 ≠ 𝑡 then MoveEdge(〈𝑛, 𝑣〉 → 〈𝑛, 𝑡〉)
16 𝐻.push(𝜅 [𝑛], 𝑛)
17 return 𝑇

Lemma 4.1, we know that any DAG neighbors that it is connected to will also be connected

to the parent, and so the new tree node is valid. �

Lemma 4.10. Algorithm 4.2 runs in 𝑂 (𝜌(𝑛 + 𝑚) log 𝑛).

Proof. The heap processes each vertex once, and each vertex can potentially have all edges

attached, resulting in 𝑂 (𝑛 +𝑚) per iteration. However, edges may be carried upwards, and

in the worst case all edges except one are carried upwards resulting in a factor of 𝜌. The

log factor comes from the heap use. �

4.5 Maintaining the ST-Index

In this section, we show how to maintain the ST-Index on a graph stream. The objective

is to develop a batch dynamic algorithmAΔ that will output the shell tree ST-Index, while

having a small internal state As
Δ

and a quick runtime with low variability.

71

Algorithm 4.3: SingleEdge (incremental case).
Input: graph 𝐺 = (𝑉, 𝐸), 𝑒 = {𝑢, 𝑣}, 𝜅−, 𝜅+, ST-Index = (𝑀,𝑇)

1 if 𝜅− [𝑢] > 𝜅− [𝑣] then swap 𝑢, 𝑣
2 𝐾 ← 𝑀 [𝑢] ⊲ find the tree node for 𝑢
3 𝑆 ← {𝑤 ∈ 𝑉 : 𝜅− [𝑤] ≠ 𝜅+}
4 if 𝑀 [𝑢] .vertices = 𝑆 then

⊲ The entire shell moves as one subcore
5 for 𝑐 ∈ 𝐾.children do
6 if 𝑐.k = 𝑘 + 1 then Merge(𝐾, 𝑐)
7 𝐾.k← 𝑘 + 1
8 return 𝑇
⊲ We need to merge or create a new sink

9 𝐾.vertices← 𝐾.vertices \ 𝑆
10 𝑋 ← 〈𝐾, 𝑘 + 1, 𝑆〉 ⊲ new tree node with parent 𝐾, level 𝑘 + 1, vertices 𝑆
11 for 𝑤 ∈ 𝑆 do
12 for 𝑛 ∈ Γ𝐺− (𝑤) \ 𝑆 do
13 if 𝜅+ [𝑛] ≥ 𝑘 + 1 then MergeOrConnect(𝑋, 𝑀 [𝑛])
⊲ Merge the path with 𝑣

14 𝑐 ← 𝑀 [𝑣], 𝑙 ← SINK
15 while 𝜅 [𝑐] ≥ 𝜅+ [𝑢] do
16 𝑙 ← 𝑐; 𝑐 ← 𝑐.parent
17 MergePaths(𝑋, 𝑐)
18 return 𝑇

4.5.1 Maintaining Coreness

We refer the reader to [274, 225, 164, 91] for algorithms to maintain 𝜅. These approaches

(and similarly ST-Index) extend to trusses [50] and other nuclei [223] by use of a hyper-

graph [90]. For our experiments we implemented and use Order [274], the state-of-the-art

decomposition maintenance algorithm.

For notational convenience, consider a time 𝑡. Let𝐺− denote𝐺 (𝑡) and𝐺+ denote𝐺 (𝑡+Δ) .

Let 𝜅− denote the 𝜅 values in 𝐺− and 𝜅+ denote 𝜅 values in 𝐺+.

We take advantage of the following crucial property of coreness values on graphs: the

subcore theorem.

Theorem 4.3 ([225]). Let {𝑢, 𝑣} be an edge change. Suppose 𝜅𝐺− [𝑢] ≤ 𝜅𝐺− [𝑣]. Then,

only vertices in the subcore containing 𝑢 may have 𝜅 values change in 𝐺+, and they may

72

Algorithm 4.4: MergePaths, which merges two paths starting from tree nodes
𝑈 and 𝑉 until the root.

Input: ST-Index = (𝑀,𝑇),𝑈, 𝑉
1 if𝑈 = 𝑉 then return
2 if 𝜅 [𝑈] > 𝜅 [𝑉] then swap𝑈, 𝑉
3 𝑐 ← 𝑉 ; 𝑙 ← SINK
4 while 𝜅 [𝑐] ≥ 𝜅 [𝑈] do
5 𝑙 ← 𝑐; 𝑐 ← 𝑐.parent
6 if 𝜅 [𝑈] = 𝜅 [𝑐] then
7 Merge(𝑈, 𝑐)
8 return MergePaths(𝑐,𝑈.parent)
9 else

10 MakeChild(𝑈, 𝑐)
11 return MergePaths(𝑐,𝑈)

only change by 1 (increase by 1 for insertion, decrease by 1 for deletion.)

4.5.2 Single Edge Maintenance Algorithm

The main idea for maintaining the ST-Index edge-by-edge is to first break apart any core

or shell that was increased and then repair the tree by merging together the paths from the

endpoints. For deletions, a map is made that determines where, after a core is split, it could

return to in the tree. Then, the path from the core to the root is traversed and any potential

split is determined. Our algorithm shares many similarities to the community search algo-

rithm of [80]. Our algorithm addresses cores instead of the more general community search

problem on attributed graphs. Specifically, it does not need to support queries involving

subsets of vertices. We refer to this approach as SingleEdge. We describe insertions in

detail—deletions are similar but split nodes [80].

Let 𝐾 be the tree node that has a lower 𝜅 value given an edge insertion. We first check

if all of 𝐾’s vertices leave. If so, we move 𝐾 down and merge its children with connected

subcores. Next, we iterate through the moved vertices and identify if they are connected

to a shell tree node at level 𝑘 + 1. If so, we merge those shell tree nodes together. If not,

we create a new tree node for the moved vertices. Then, we walk up the tree from both

73

K

...

V

...

r

New Edge

Merge paths
to level k+1

Move K to
level k+1

Figure 4.8: The incremental algorithm process. First, the tree node corresponding to the
smaller 𝜅 level vertex, 𝐾 , is processed. Next, the paths to 𝐾 and to the tree node being
connected are merged to level 𝑘 + 1.

endpoints and, starting at level 𝑘 + 1, begin merging all visited vertices. The algorithm

is presented in Algorithm 4.3, with merge paths presented in Algorithm 4.4. A visual

depiction is given in Figure 4.8.

Lemma 4.11. The runtime for Algorithm 4.3 is𝑂 (|Γ(𝑆) | + 𝜌𝑛), where 𝑆 is the subcore that

increases 𝜅.

Proof. In the first part, the modified subcore and all of its immediate neighbors are ac-

cessed, resulting in 𝑂 (Γ(𝑆)) work. After that, in the worst case, the height of the tree will

be accessed to find the closest neighbor to merge in, resulting in 𝑂 (𝜌𝑛) work. �

4.5.3 Batch Maintenance

We now present our batch maintenance algorithm. First, we present the opportunity for

reducing work by providing an example. In Figure 4.9, we show the graph before and after

the batch.

The idea is to keep the subcore DAG in memory and use it to update the subcore tree.

This can naturally be combined with SingleEdge to provide a hybrid approach, moving

74

A

G- G+

B

C

D

E

F

A

B

C

D

E

F

Figure 4.9: An example graph before a batch of insertions (𝐺−) and after (𝐺+). The
coreness moves from 𝜅 = 2 to 𝜅 = 5 for each vertex.

between the two based on a batch size. We maintain an additional pointer between every

node in the tree and every node in the subcore DAG. There are two main parts to maintain-

ing the subcore tree in the subcore batch algorithm. First, we maintain the subcore DAG by

iterating over changed vertices and recomputing any subcore changes, creating and merg-

ing subcores (locally) as appropriate. Second, we need to maintain the ST-Index given the

DAG changes. To do this we begin by making all of the DAG changes propagate forward

to the tree. Any deleted DAG node results in deleting the reference from the subcore tree,

any newly empty tree nodes are deleted, and any new DAG nodes and their connections

are added to the tree. The tree is now no longer a DAG. We then run the heap-based Al-

gorithm 4.2 to finish turning the modified structure back into a tree. During this process

we maintain the reverse vertex maps. Unlike SingleEdge, our batch approach naturally

covers deletions identically to insertions and both insertions and deletions can be mixed

inside of batches. This is due to handling both endpoints of an edge change, instead of

only the endpoint with a lower 𝜅 value at some point in time. The approach is shown in

Algorithm 4.5. Following the example in Figure 4.9, we show the saved work between

SingleEdge and Batch in Figure 4.10.

75

Algorithm 4.5: The Batch algorithm.
Input: ST-Index = (𝑀,𝑇), DAG 𝐷, batch 𝐵

1 𝐶 ← {𝑣 : 𝑣 ∈ 𝑒 ∈ 𝐵}; 𝐾 ← ∅
2 𝐼 ← ∅ ⊲ Visited set
3 for 𝑣 ∈ 𝐶 do
4 if 𝑣 ∈ 𝐼 then continue
5 𝐼 ← 𝐼 ∪ {𝑣}
6 𝑄 ← Queue; 𝑄.push(𝑣) ⊲ Change queue
7 while 𝑄 ≠ ∅ do
8 𝑞 ← 𝑄.pop()
9 𝑛𝑑 , 𝑛𝑇 ← 𝐿 [𝑞] ⊲ DAG/Tree node of 𝑞

10 𝐾 ← 𝐾 ∪ {𝑛𝐷}
11 𝑛′

𝑑
← new DAG node

12 assign 𝑞 to 𝑛′
𝑑

in 𝐷 and 𝑀,𝑇
13 𝑆 ← Queue; 𝑆.push(𝑞) ⊲ Subcore queue
14 while 𝑆 ≠ ∅ do
15 𝑛← 𝑆.pop()

/* Check if 𝑛 is in the subcore */
16 if 𝜅+ [𝑛] ≠ 𝜅+ [𝑞] then

/* If 𝑛 changed, process it separately */
17 if 𝑛 ∉ 𝐼 and 𝜅− [𝑛] ≠ 𝜅+ [𝑛] then
18 𝐼 ← 𝐼 ∪ {𝑛}
19 𝑄.push(𝑛)
20 continue
21 if 𝑛 ∉ 𝐼 then
22 𝐼 ← 𝐼 ∪ {𝑛}
23 𝑄.push(𝑛)
24 assign 𝑛 to 𝑛′

𝑑
in 𝐷 and 𝑀,𝑇

25 remove newly isolated nodes in 𝐷
26 copy DAG edges from DAG nodes in 𝐾 to 𝑇
27 remove newly empty tree nodes in 𝑇
28 run Algorithm 4.2

76

ABC

Baseline

DEF ABCDEF BC

ADEF

C

ABDEF

C

ABDEF

C

ABDEF ABCDEF

ABCDEF

k=2

k=3

k=4

k=5

Our Approach

ABC DEF

ABCDEF

X Y

Shell Tree:

(7 tree changes)

Subcore DAG:
Z

(3 bulk tree changes +
recompute X, Y subcores)

processing edges in the batch processing batch

Figure 4.10: Following the example in Figure 4.9, we show the tree changes processing with SingleEdge compared with our batch
approach. The cost is an increase in memory to store the subcore DAG and unnecessary work if a modified subcore does not significantly
change.

77

Our runtime is the cost of Algorithm 4.2 plus the cost of a BFS over each modified

subcore. Correctness follows from Algorithm 4.2 as we maintain the built data structures

and operations. In the worst case this can be the runtime of Algorithm 4.2. However, note

that the BFS on subcores is limited to modified subcores. As such, empirically we run

faster than re-computing from scratch, as shown in the following Section 4.6.

4.6 Empirical Analysis

In this section we perform an experimental evaluation of our approach to demonstrate that

it is able to provide core queries on rapidly changing real-world graphs.

4.6.1 Environment

We implemented our algorithm in C++ and compiled with GCC 10.2.0 at O3. We ran on

Intel Xeon E5-2683 v4 CPUs at 2.1 GHz with 256 GB of RAM and CentOS 7. To perform

coreness maintenance, we implemented Order [274]. Any coreness maintenance approach

can be used in its place. We include all memory allocation costs in our runtimes. We use a

hash map of vectors to store the graph, and store both in- and out-edges. We ran five trials

for each experiment and show the results from all trials.

4.6.2 Baseline

As our baseline, we implemented the non-batch maintenance approach from [80], which

we ported to the case of computing cores on graphs (see Section 4.5.2). We refer to this as

SingleEdge. When operating on a batch, SingleEdge runs independently for each edge

change. Insertions and deletions can therefore easily be mixed. We only show results with

insertions as they are the harder case [80] and there are few known benchmark datasets

with frequent deletions.

78

Table 4.1: Graphs used with 𝑛, 𝑚 in millions.

Name 𝑛, 𝑚 DAG 𝑛, 𝑚 |𝑇 |
Ar-2005 [32, 34] 22, 640 12, 47 28 K
Orkut [267] 3, 117 1, 22 254
LiveJ [267] 4, 35 2, 12 2 K
Pokec [245] 2, 22 1, 5 54
Patents [158] 4, 17 2, 4 4 K
BerkStan [161] 0.7, 7 0.2, 0.8 2 K
Google [161] 1, 4 0.4, 1.2 5 K
YouTube [267] 1, 3 1, 2.5 140

4.6.3 Datasets

The graphs that we evaluate with are benchmark graphs that are representative of real-

world graphs from a variety of domains and with different properties. We downloaded

them from SNAP [160] (excluding Ar-2005, downloaded from [32]). The graphs we use

are given in Table 4.1. We cleaned the data by removing self loops and duplicates edges and

treated graphs as undirected. We randomized the edge order, simulating a graph stream,

and performed our experiments by first removing random edges and next inserting them.

79

1

10

100

Ar−2005
Orkut LiveJ

Pokec
Patents

BerkStan
Google

YouTube

T
im

e
(s

ec
)

(l
o

g
)

DAG Tree

Figure 4.11: The ST-Index construction time, broken down into DAG construction and
Tree construction.

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

Ar−2005
Orkut LiveJ

Pokec
Patents

BerkStan
Google

YouTube

T
im

e
(s

ec
)

(l
o

g
)

Figure 4.12: The runtime to return C queries. On all graphs, the runtimes are low enough
for interactive use.

0.1

1.0

10.0

Ar−2005
Orkut LiveJ

Pokec
Patents

BerkStan
Google

YouTube

T
im

e
(s

ec
)

(l
o

g
)

Figure 4.13: The runtime to returnH queries.

80

Patents BerkStan Google YouTube

Ar−2005 Orkut LiveJ Pokec

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10−6

10−4

10−2

100

102

104

10−6

10−4

10−2

100

102

104

Batch Size (log)

T
im

e
(s

ec
)

(l
o

g
)

FromScratch SingleEdge Batch

Figure 4.14: Varying the batch size and running Batch, SingleEdge, and FromScratch. The batch algorithm is orders of magnitude
faster than SingleEdge for batches above 105 and remains below re-computing from scratch up to 106. The data points and LOESS
smoothing lines with 95% confidence intervals are shown.

81

4.6.4 Experiments

Our main experimental goal is to evaluate the real-world feasibility of our approach on

modern graphs and systems with highly variable and large batch sizes.

First, we show the index construction time for Batch. The results are shown in Fig-

ure 4.11. In all cases building the tree is more expensive than building the DAG. The over-

all runtime reinforces the need for dynamic algorithms: for large graphs, e.g., Orkut, the

DAG construction takes around 90 seconds and the tree construction around 330 seconds.

Next, we want to show that ST-Index is a useful index for cores. We report the query

times for C in Figure 4.12 andH in Figure 4.13 on ST-Index. For C, we performed queries

from 1000 randomly sampled vertices with uniformly random 𝑘-values such that the vertex

is in a 𝑘-core. For all graphs, all cores are returned in under one second with many in

the tens of milliseconds. Given that our query is efficient the runtime largely consists of

copying memory. The denser the core the faster the return tends to be, as there are fewer

vertices to copy out. In many cases, the runtimes are fast enough to be used for interactive

applications, e.g., in web page content. For H , we report the time to build and return the

full hierarchy, including each node at each level. This is under 10 seconds for all graphs,

showing that full hierarchies can be used for interactive time applications.

Finally, we maintained cores for 100 batches of different batch sizes for each graph. The

results are shown in Figure 4.14. In all cases, when batch sizes are large Batch remains

below both FromScratch and SingleEdge. For a batch dynamic algorithm, we are looking

for the region below re-computing from scratch and below single-edge algorithsm. In some

graphs, such as Pokec and Patents, it is not a large region, however in all graphs it exists and

provides significant improvements. Future work involves combining the DAG construction

and maintenance with the direct tree maintenance to achieve an effective hybrid approach,

achieving the lower of the all of the curves. Note that these are log-log plots, and so even

for Patents our batch approach is 2× faster than re-computing from scratch at batch sizes

of one million.

82

4.7 Summary

In this chapter, we focus on the important but overlooked problem of returning cores, as

opposed to coreness values. We consider both core queries, which return a 𝑘-core, and

hierarchy queries, which return the full core hierarchy. Our approach applies beyond 𝑘-

cores to other arbitrary nuclei, such as trusses.

We develop algorithms around a tree-based index, the ST-Index, that is efficient and

takes linear space in the number of graph vertices. We provide an algorithm to construct

the ST-Index using a new approach based on a subcore DAG. We design and implement a

batch maintenance algorithm for ST-Index that uses the same subcore DAG and can handle

variable and high batch sizes. We show that our approach is able to run faster than edge-

by-edge approaches on rapidly changing graphs and can return cores and hierarchies fast

enough for interactive use.

83

CHAPTER 5

TEMPORAL DENSE REGIONS WITH CORE CHAINS

In this chapter, we address the increasingly important problem of identifying dense regions

inside of temporal graphs that are constantly changing over time. We identify that prior

approaches which find temporal regions of static vertex sets are unable to capture the dy-

namics of the dense regions themselves. Instead, we propose to link together dense regions

in hierarchies over time, which we call core chains. These are easy to compute and define

and do not require pairwise comparisons between all sets. We propose two concrete core

chains, one which always includes a seed set and another which follows the majority of ver-

tex movements. We demonstrate that these core chains are able to provide useful insight in

two use cases: identifying closely related but distinct research groups as they change over

time and exposing ant behavior as ants progress between different stages of life.

5.1 Introduction

Graphs have proven to be a powerful tool for studying data that has internal relationships.

An increasingly important problem is to find dense regions of graphs. Such regions have

proven useful for a variety of tasks, including identifying communities [148, 64], deriving

news stories [13], finding link spam [103], and uncovering DNA motifs [88]. Exactly

finding the densest regions of a graph is NP-hard [138], and many approximations remain

hard [39, 52]. Powerful yet efficient regions to compute are 𝑘-cores [228, 183] and 𝑘-core-

like structures [180], which have become standard graph analysis targets.

Many of the graphs used for analysis today are not static, and instead change over time.

Graphs that preserve time information are known as temporal graphs. An increasingly

important challenge is to develop methods to take advantage of this additional temporal

information for dense region discovery [118]. Intuitively a dense region in a temporal

84

0 21

 time

Figure 5.1: An example showing how vertex-focused approaches can fail. Intuitively,
there is a dense region for three time points: the region only becomes denser at 𝑡 = 1. All
vertices are part of a 3-core at each time point. However, there is no 3-core that lasts three
time points.

graph is dense over a period of time, but not necessarily over all time. There has been a

recent surge of interest in finding dense regions on temporal graphs [18, 165, 123, 97, 206,

208, 167, 166, 173, 216], and there are promising applications, such as uncovering disease

spread [49].

Prior work on temporal dense regions are what we call vertex-focused. A vertex-focused

temporal region is defined by both a subgraph and a time interval, where every vertex in

the subgraph matches a property for every point in time in the time interval. They are

called vertex-focused because the focus of the approach is on every vertex matching some

property. The main research challenges are then to jointly find a suitable subgraph and time

interval. For example, a span-core [97] is a maximal set of vertices that have a degree at

least 𝑘 at all times within a temporal interval. Similarly an (𝐿, 𝐾)-lasting core [123] is a

maximal set of vertices with degree at least 𝐾 for all points in the continuous time range 𝐿.

A (𝜃, 𝜏)-continual 𝑘-core [165] is a maximal set of vertices with degree at least 𝑘 , which

appears in every continuous time interval of length 𝜃, with a total time interval size of at

least 𝜏. In these three examples, and more, the definition focuses on a set of vertices with

some properties for a time interval. Unfortunately, on many temporal datasets, we show

that these vertex-focused approaches do not tend to find useful dense regions.

In a temporal graph, vertices can come and go—even if a dense region remains. Fig-

85

ure 5.1 shows an example temporal graph with three snapshots at three time points. In

this example, the orange vertex leaves and the blue vertex joins at time 𝑡 = 1. Intuitively,

the graph only becomes denser and so a temporal dense region should last the entire time.

However, because the orange vertex leaves, no 3-core is present for the whole time and

as such there is no vertex-focused temporal core, highlighting the limitations of vertex-

focused approaches.

As an example, consider a department within a company that naturally forms a dense

region. The company may have continual employee and management churn, yet the de-

partment persists. A vertex-focused definition would not be able to capture such a dense

region. We focus on three concrete use cases where vertex-focused approaches fail: finding

research groups in co-author graphs [237] that continue as students graduate, identifying

good and bad users in Bitcoin trust networks [150, 149], and uncovering the maturation and

progression of ants [190, 212], Overall, vertex-focused approaches are somewhat at odds

with the inherently temporal nature of the dense regions themselves.

We propose a different approach that defines a new temporal, dense region, called a

core chain, as an entity separate from its internal vertices at some point in time. At a

high level, this approach chains together dense regions from individual snapshots of the

temporal graph, and the chain itself is the new dense region.

Suppose we have a hierarchy of dense regions at each point in time. We call D the

temporal hierarchy, and define it as a multilayer multigraph, where there is one layer for

every time point 𝑡 that contains the hierarchy of dense regions at time 𝑡. Edges between

subsequent layers, e.g., from time 𝑡−1 to 𝑡, capture the movement of vertices between parts

of the dense hierarchy from time 𝑡 − 1 to 𝑡. A challenge we address is to efficiently store

and query D, avoiding dense pairwise storage and computation.

As a running example, consider the dense hierarchy of the communication graph among

company employees, with time discretized by day. As a day’s communication differs from

the prior day, the dense hierarchy at 𝑡 may differ from the hierarchy at 𝑡−1. Each employee

86

present at both 𝑡 − 1 and 𝑡 has a position in the corresponding dense hierarchies: for each,

this position is the densest region that they are in at that point in time. A layer edge is then

made in D for each employee, between each consecutive time points, connecting their

potentially changing positions in the dense hierarchies.

We then define a core chain as a layer path, a set of intersecting edges in D that only

cross layers. There are many such possible paths, but concrete path objectives and con-

straints can result in meaningful dense regions. We define two such constrained paths:

𝑘-seeded core chain and 𝑘-majority core chain. Both 𝑘-seeded core chains and 𝑘-majority

core chains are maximal paths. Recall that inside of layers there are hierarchies of dense

regions: we define these formally later, but they must be rooted trees, and the farther from

the root the denser a region is. Both 𝑘-seeded core chains and 𝑘-majority core chains must

be 𝑘 hops away from the root. In a 𝑘-seeded core chain, the path follows edges that contain

all vertices in a seed set. In a 𝑘-majority core chain, the path follows edges that contain the

majority of edges from a supplied starting point.

The seed set could be, for example, a particular manager at a company. Then, the

𝑘-seeded core chain would return a chain of dense hierarchy nodes, each containing the

manager (and with a density level, that is a height in the density hierarchy, of at least 𝑘).

If the manager changes to another department, the 𝑘-seeded core chain would continue

following the manager. For a 𝑘-majority core chain, if the dense region corresponding to

a department is set as the initial dense region, then the chain would contain subsequent

hierarchy nodes with the majority of staff members carrying over from the previous day.

This would continue to return a dense region corresponding to the department even if the

manager is replaced.

We show that 𝑘-seeded core chains are able to effectively find dense regions for research

groups based on co-authorship data and 𝑘-majority core chains can uncover the behavior

of ants as they mature and grow, moving from nurses to foragers.

Note that our approach applies to any dense region which is hierarchical. We evalu-

87

ate using nuclei [223], which generalize 𝑘-cores and provide richer and more impactful

hierarchies that importantly tend to be stable.

Our computational strategy relies on maintenance algorithms. We use nuclei mainte-

nance algorithms [90] along with 𝑘-core hierarchy maintenance algorithms [92]. Overall,

we show core chains are able to find temporal dense regions when vertex-focused ap-

proaches fail. These dense regions expose behavior in the underlying data and provide

greater insight that is otherwise lost or unavailable.

Contributions. Our main contributions are as follows:

• We define core chains, which are inherently temporal dense regions that are robust

against vertex and edge changes

• We provide an effective data structures and algorithm to build and query D

• We propose two concrete core chains, 𝑘-seeded core chain and 𝑘-majority core chain

and provide algorithms to compute them

• We evaluate the effectiveness of 𝑘-seeded core chain and 𝑘-majority core chain using

two case studies

The remainder of this chapter is structured as follows. In § 5.2 we describe preliminar-

ies and related work. In § 5.3 we define core chains and the two concrete instantiations,

𝑘-seeded core chains and 𝑘-majority core chains. In § 5.4 we propose algorithms and data

structures to build and query D. In § 5.5 we evaluate 𝑘-seeded core chain and 𝑘-majority

core chain with three use cases and in § 5.6 we conclude.

5.2 Preliminaries and Related Work

5.2.1 Preliminaries

Graphs A graph 𝐺 = (𝑉, 𝐸) is a set of vertices 𝑉 and edges 𝐸 . An edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸

indicates a connection between vertices 𝑢, 𝑣 ∈ 𝑉 . The neighbors of a vertex 𝑣 in 𝐺 are

88

denoted Γ𝐺 (𝑣) = {𝑢 ∈ 𝑉 : {𝑢, 𝑣} ∈ 𝐸}. The degree of 𝑢 is given by deg𝐺 (𝑢) = |Γ𝐺 (𝑢) |.

𝐺 can be dropped, if there is no ambiguity. An 𝑙-clique is a fully connected graph on

𝑙 vertices. A path is a sequence of connected edges that visit each vertex at most once.

A cycle is a sequence of connected edges that start and end at the same vertex. A tree

𝑇 = (𝑉, 𝐸) is a connected graph with no cycles. A hypergraph 𝐻 is a generalization of

graphs, 𝐻 = (𝑉, 𝐸) where𝑉 is again a vertex set but each edge 𝑒 ∈ 𝐸 is a subset of vertices,

i.e., 𝑒 ⊆ 𝑉 . A multigraph follows the graph definition, but edges are a multiset instead of

a set (and so identical edges may be present). A multilayer multigraph is conceptually

a collection of graphs, called layers, where each layer typically shares a vertex set with

other layers and has edges that remain within the layer. Additional edges cross between

layers. Formally, a 𝑘-layered multigraph G = ([𝐺1, . . . , 𝐺𝑘], E), where 𝐺 𝑡 is a graph and

E = {(𝑙1, 𝑙2, {𝑢, 𝑣}), . . . } is a multiset representing edges crossing between layers, with

𝑙1, 𝑙2 ∈ {1, . . . , 𝑘} and 𝑢, 𝑣 ∈ ⋃𝑘
𝑖=0𝑉𝑖. A layer path in a multilayer multigraph is a sequence

of edges in E that connect distinct graphs 𝐺 𝑡 .

Given a discrete time domain 𝑇 , a temporal graph 𝒢 = [𝐺 𝑡]𝑡∈𝑇 is a collection of graphs

for each time point, where vertices and edges may change between time points. This can

be represented as a stream of edge changes with timestamps, 𝒢 = ({𝑢, 𝑣, 𝑡,±}, . . .), where

𝑢, 𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑇 , and ± indicates whether the edge is created (+) or deleted (−) to arrive at

𝐺 𝑡 from the previous time, starting from 𝐺0 = (∅, ∅).

In many cases, temporal data only directly indicates interactions, and to create a tem-

poral graph from these datasets it is helpful to understand the natural lifespan of the in-

teraction. In these cases insertions can be created when the interaction begins, and a cor-

responding edge deletion is created at a time when the interaction no longer has meaning.

This process is known as ageing out edges. For example, in the case of ants, any interaction

between ants may naturally age out after one day [190].

A maintenance algorithm operates on a stream of graph edge changes, but it does not

take into consideration time. Given a prior state and a batch Δ of edge changes, a mainte-

89

nance algorithmAΔ will return the same output as a static algorithm that runs on the entire

known graph. Maintenance algorithms are useful to improve performance for keeping an

up-to-date algorithm output as the graph changes, even if they do not provide asymptotic

runtime improvements over re-computing [77].

𝐶-trees 𝐶-trees were introduced to quickly handle updates to dynamic graph data struc-

tures [59]. A 𝐶-tree is a method of storing an ordered list of elements. At a high level,

there is some probability that an element in the list will become promoted and otherwise,

the element will be attached to the closest promoted element in the ordered list before it.

The technique used to randomly choose an element to promote is to hash the value, with

a randomly random hash function, and see if the resulting hash is zero. Note that the pro-

moted elements are still ordered, but there are a lot fewer of them than elements in the full

list. These promoted nodes are then placed in a balanced binary tree.

Let 𝑆 = (𝑠1, . . . , 𝑠𝑛) be an ordered list, ℎ be a uniformly random hash function, and

𝑏 ∈ N a constant. A 𝐶-tree will promote some of the elements to tree nodes, and the

remaining elements will be attached to the tree node before them, defining the node’s value.

An element 𝑠 ∈ 𝑆 is promoted if ℎ(𝑠)mod 𝑏 = 0. The value associated with 𝑠 is a variable

sized ordered list (𝑠 𝑗 , . . . , 𝑠𝑘) where 𝑠 𝑗 , . . . , 𝑠 𝑗 are greater than 𝑠 and less than 𝑠′, where

ℎ(𝑠′)mod 𝑏 = 0 is the next promoted element. Finally, any elements prior to the first

promoted element are considered the prefix and stored as a separate block. The promoted

elements are stored in a balanced binary tree.

When the ordered list that a 𝐶-tree represents is updated, the binary tree will need a

path to the root to be updated, but the associated values will only change if those elements

change.

Cores and Nuclei Cores [228, 183] are connected regions of a graph that have a self

sustaining minimum degree. If the remainder of the graph is removed, the core retains

its minimum degree. Nuclei [223] are generalizations of cores that are parameterized by

90

two integers, 𝑟 and 𝑠. We explain nuclei through (𝑟, 𝑠)-hypergraphs. Formally 𝑘-core,

(𝑟, 𝑠)-hypergraph and 𝑘-(𝑟, 𝑠) nuclei can be defined as follows:

Definition 5.1 (𝑘-core [228, 183]). Let 𝑘 ∈ N and let 𝐺 be a graph. A 𝑘-core is a maximal

connected subgraph induced by 𝐾 ⊆ 𝑉 such that ∀𝑣 ∈ 𝐾 , deg𝐺 (𝑣) ≥ 𝑘 . The largest 𝑘

value such that a vertex 𝑣 is part of a 𝑘-core but not a (𝑘 + 1)-core is denoted 𝜅 [𝑣].

Definition 5.2 ((𝑟, 𝑠)-hypergraph [90]). Let 𝑘, 𝑟, 𝑠 ∈ Nwith 𝑟 < 𝑠 and let𝐺 be a graph. The

(𝑟, 𝑠)-hypergraph has a vertex for each 𝑟-cliques in 𝐺 and a hyperedge for each 𝑠-clique,

where each hyperedge connects all
(𝑠
𝑟

)
𝑟-cliques in the corresponding 𝑠-clique.

Definition 5.3 (𝑘-(𝑟, 𝑠) nuclei [223]). Let 𝑘, 𝑟, 𝑠 ∈ N with 𝑟 < 𝑠 and let 𝐺 be a graph.

A 𝑘-(𝑟, 𝑠) nucleus is a 𝑘-core in the (𝑟, 𝑠)-hypergraph. Note that hyperedges, similar to

edges, cannot be broken: either the entire edge is in a subgraph or none of it is. The largest

𝑘 value for an 𝑟-clique such that the 𝑟-clique is part of a 𝑘-nucleus but not a (𝑘+1)-nucleus

is denoted 𝜅 [𝑟].

There are several maintenance algorithms for 𝑘-cores [180]. The Order algorithm [274]

is the current state-of-the-art decomposition maintenance algorithm. However, this only

maintains the density levels for each vertex. Efficient algorithms have been developed

to then maintain the full hierarchy [92]. Furthermore, arbitrary (𝑟, 𝑠) nuclei maintenance

is possible by first maintaining the (𝑟, 𝑠)-hypergraph and then maintaining hypergraph 𝑘-

cores [90].

5.2.2 Related Work

Finding dense regions of temporal graphs is an increasingly important topic, with a rapid

increase in work over the last several years. Prior work can be categorized based on how

density is defined. The definition we consider views density as the ratio of edges in a

subgraph to the number of possible edges, where the densest region is then a clique. Using

this definition, Wu et al. and Bai et al. [264, 18] project the temporal graph to a weighted

91

graph by adding 1 to every edge weight for every snapshot the edge is in, and then find

weighted cores. Aggarwal et al. [4] builds a probabilistic pattern to match high density

regions defined as pseudo-cliques. Yang et al. [268] looks at quasi-cliques that are present

within a time range. There are many approaches that consider cores in any sufficiently long

interval, with different properties such as being diverse, periodicially occuring, or lasting

a maximal amount of time [54, 95, 97, 206, 208, 163, 167, 123, 165]. Lin et al. [166]

considers quasi-cliques that need to be present on average within a time range. Yu et

al. [269] finds historical 𝑘-cores and develops an index to quickly query them, but does not

explicitly find temporal cores.

All of the above approaches are vertex-focused. A vertex-focused temporal region is a

subgraph and a time interval, and the subgraph needs to exist and have some property for

the whole time interval. A vertex-focused temporal core, for example, is a 𝑘-core that must

exist for the whole time range. They will fail to uncover a dense region when the region

itself is undergoing change: instead, they find static regions that exist for some period of

time.

There are several other approaches that consider density as the average degree, sum of

weights, or as a cohesiveness measure [207, 172, 173, 130, 229, 216, 31, 177, 48]. Other

approaches find periodic subgraphs and motifs, but do not require them to be dense [153,

24].

A related problem to finding dense regions is to perform community detection or clus-

tering, which identifies potentially overlapping communities in datasets [86, 118, 108].

This differs in focus from finding dense regions by focusing more on individual vertex

membership in a community, instead of considering the graph structure. While some com-

munity detection algorithms are hierarchical, the trade-off from the shifted focus can result

in highly variable swings during only minor—or even no—graph changes [94]. There are

many similar ideas for core chains and dynamic community detection tracking. In both

approaches, hierarchies or communities exist for each time point, and the problem is in

92

how to connect them to identify the temporal structure. Core chains do not show promise

when the hierarchy radically changes from time point to time point, and similarly temporal

community connection approaches [108] do not apply well to stable hierarchies, such as

those from nuclei.

5.3 Core Chain Definition

In this section we first define core chains and then propose two concrete core chains that

identify dense, temporal regions in graphs.

We build core chains off of density hierarchies. We build up to the definition of a density

hierarchy in this section, but the intuition is that some regions (subgraphs) are denser than

others. By the nature of density, if a region is very dense, there is likely a larger and less

dense region that the dense region is also part of. At the extreme, all dense regions are part

of the entire graph, which may be very sparse. This implies a hierarchy can be built, where

the regions connect in a rooted tree where the root ultimately contains the entire graph.

While our definition and approach is for density hierarchies in general, we provide

examples using 𝑘-cores (Definition 5.1) for clarity. Note that any vertex in a 𝑘-core with

𝑘 > 1 is also in a (𝑘 − 1)-core: if all vertices in the subgraph have a degree at least 𝑘 , then

they all also have degree at least 𝑘 − 1. As such, the 𝑘-cores of a graph can be represented

by a tree, where the root is a special node representing the whole graph, and all other nodes

represent cores in the graph. The distance from the root is the level 𝑘 of the 𝑘-core, and the

immediate neighbors of the root are the 1-cores (connected components) of the graph. As

nodes in the tree are farther from the root, they have a higher 𝑘 value.

We call such a tree a density hierarchy tree.

Definition 5.4. Let 𝑇 = (𝑁, 𝐿) be a rooted tree with root 𝑟, tree nodes 𝑁 , and tree edges

𝐿, where {𝑛, 𝑚} ∈ 𝐿 with 𝑛, 𝑚 ∈ 𝑁 . Then 𝑇 is a density hierarchy tree, where each node

𝑛 ∈ 𝑁 represents a dense region. The root 𝑟 ∈ 𝑁 is a special node that represents the entire

graph. The distance from 𝑟 to node 𝑛 ∈ 𝑁 represents the density level of 𝑛.

93

4-core

2-core

1-core3-core

3-core

graph and cores density hierarchy tree

Figure 5.2: A graph, its cores, and its density hierarchy.

Consider the example in Figure 5.2. On the left we show a graph along with its 𝑘-cores.

There is a 1-core that represents the connected component. In orange there is a 2-core, in

blue there are two different 3-cores, and in red there is the densest region, a 4-core. The

density levels are hierarchy: everything in the 4-core is also in one of the 3-core, which

are in the 2-cores and ultimately everything is in the 1-core. The corresponding density

hierarchy tree is shown on the left. The small circle corresponds to the root, the dark green

the one core, the orange the two cores, and so on. An edge in the hierarchy represents that

the denser region, which is farther from the root, is contained inside of the closer region.

Next, we need to capture how the vertices in the graph are mapped into the tree nodes.

Due to the hierarchical nature of the density hierarchy tree, we know that if a vertex is in

a dense region, then it is also in all of the other dense regions along a path to the root of

the tree. Furthermore, a node cannot be in two separate dense regions—otherwise it would

not be a hierarchy. This means that, for each vertex, it is sufficient to map it to the just the

densest node in the density hierarchy: all of the other less denser regions it is part of can be

explored by walking from the node towards the root.

Definition 5.5. Given a density hierarchy tree 𝑇 = (𝑁, 𝐿) with root 𝑟, and a graph 𝐺 =

(𝑉, 𝐸), a density mapping 𝑀 : 𝑉 → 𝑁 maps every vertex to the farthest tree node away

from the root corresponding to a dense region the vertex is in.

Both the tree and the mapping together are called a density hierarchy, which is what

core chains are built on.

94

time

0

1

Figure 5.3: An example temporal graph with two time points, each shown by the corre-
sponding graph snapshot on the right side. Between the first and second time points, the
orange node (and associated edges) are deleted, and the blue node (and its edges) are added.
The density hierarchies for each time point is shown on the left side.

Definition 5.6. For a graph 𝐺 = (𝑉, 𝐸), a density hierarchy 𝐷 = (𝑇, 𝑀) consists of a

rooted density hierarchy tree 𝑇 = (𝑁, 𝐿) with root 𝑟 and a density mapping 𝑀 : 𝑉 → 𝑁 .

In a temporal graph, the density hierarchy may differ between points in time. We denote

the hierarchy at time 𝑡 as 𝐷𝑡 = (𝑇𝑡 , 𝑀𝑡). The maximum depth of all hierarchies is denoted

𝜌.

An example temporal graph and its density hierarchies at two points in time, derived

from 𝑘-cores, are shown in Figure 5.3.

Consider the vertex movement between dense regions at points in time. Note that this

is separate from the density mapping changes—and it is separate from any temporal graph

changes. This movement indicates what dense regions a vertex is in after the time change.

For example, if a vertex starts in a 2-core, note that it is also in the 1-core and in the root

(the 0-core). If the density drops from a 2-core to a 1-core, then its vertex movement would

be the set of all possible changes: {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1)}, where (𝑎, 𝑏)

indicates it is in dense region 𝑎 at the first timestep and it moves to 𝑏 at the second.

By definition, we know that 𝑀𝑡 will map a vertex into the densest region that the vertex

95

appears in at time 𝑡, and due to the hierarchical nature of 𝐷𝑡 it exists in all less dense regions

to the root. To build all vertex movements, we create an entry for every pair of tree nodes

that a vertex is in between two consecutive time points.

Definition 5.7. Let 𝑇 be a time range, 𝒢 = [𝐺 𝑡 = (𝑉𝑡 , 𝐸𝑡)]𝑡∈𝑇 be a temporal graph, and

𝐷𝑡 = (𝑇𝑡 , 𝑀𝑡) be the density hierarchy for time 𝑡 ∈ 𝑇 . Let 𝑃𝑡 (𝑣) be the vertices along the

path in 𝑇𝑡 from 𝑀𝑡 (𝑣) to the root of 𝑇𝑡 . Then, the vertex movement for 𝑣 from 𝑡 to 𝑡 + 1 is

given by 𝑀 𝑡+1
𝑡 (𝑣) = {{𝑎, 𝑏} : 𝑎 ∈ 𝑃𝑡 (𝑣), 𝑏 ∈ 𝑃𝑡+1(𝑣)}.

We can now define the main datastructure used in core chains.

Definition 5.8. Let 𝑇 be a time range, 𝒢 = [𝐺 𝑡 = (𝑉𝑡 , 𝐸𝑡)]𝑡∈𝑇 be a temporal graph, and

𝐷𝑡 = (𝑇𝑡 , 𝑀𝑡) be the density hierarchy for time 𝑡 ∈ 𝑇 . Then the temporal hierarchy is a

multilayer multigraph D = ([𝐺 𝑡]𝑡∈𝑇 , E), where

E =
⋃

[𝑡,𝑡+1]∈𝑇
(𝑡, 𝑡 + 1) ×

⋃
𝑣∈𝑉𝑡∩𝑉𝑡+1

𝑀 𝑡+1
𝑡 (𝑣).

Lemma 5.1. Let 𝑇 be a time range, 𝒢 = [𝐺 𝑡 = (𝑉𝑡 , 𝐸𝑡)]𝑡∈𝑇 be a temporal graph, and

D = ([𝑇𝑡 = (𝑁𝑡 , 𝐿𝑡)]𝑡∈𝑇 , E) be a temporal hierarchy for 𝒢. Let 𝑛 = max𝑡∈𝑇 |𝑉𝑡 |. D has at

most 𝑂 (|𝑇 |max𝑡∈𝑇 (|𝑁𝑡 |)2𝑛) edges.

Proof. Every vertex may contribute its edges at each time point. In the worst case, the

vertex may be part of every dense region, and hence there are max𝑡∈𝑇 (|𝑁𝑡 |)2 edges per

vertex. This bound is tight: consider a clique that does not change and the density hierarchy

from 𝑘-cores on it. �

The temporal hierarchy captures both the density hierarchies at all times and the vertex

movement between different points in the density hierarchies. Figure 5.4 shows an example

temporal hierarchy.

Definition 5.9. A core chain is a layer path in D.

96

𝑡 =
0

𝑡 =
1

Figure 5.4: The temporal hierarchy corresponding to the graph in Figure 5.3, showing each
possible dense region a vertex can move between from 𝑡 = 0 to 𝑡 = 1 after starting in the
𝑘 = 2 core. Edge size indicates the number of multiedges. Note this temporal hierarchy,
with numerous edges, does not need to be explicitly stored or built.

𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

Figure 5.5: A core chain through a temporal hierarchy with 5 timesteps.

97

A core chain is shown in Figure 5.5. The core chain is a layer path through D. The

vertices that are part of the core chain change over time, as the graph changes temporally.

The dense object itself is the path.

There are many possible core chains, and we want to focus on those that uncover useful

and important dense regions over time. We define two concrete core chains that return such

temporal dense regions.

5.3.1 𝑘-Seeded Core Chains

A 𝑘-seeded core chain is used to return a dense region that always contains a seed set of

chosen vertices.

Definition 5.10. Let 𝑇 be a time range, 𝒢 = [𝐺 𝑡 = (𝑉𝑡 , 𝐸𝑡)]𝑡∈𝑇 , 𝑆 ⊆ ⋃
𝑡∈𝑇 𝑉𝑡 be a set of

seed vertices, andD be the temporal hierarchy of 𝒢. A 𝑘-seeded core chain is a core chain

in D that is maximal with respect to both the path length and the sum of 𝑘 values in the

chain and any tree node 𝑛 in the layer path for the core chain obeys the constraints: (1)

each vertex of 𝑆 maps to 𝑛 and (2) the depth of 𝑛 is at least 𝑘 .

Note that there may be more than one 𝑘-seeded core chain in a given temporal graph

for a given seed set 𝑆, as 𝑆 may come and go in dense regions in different periods of time.

This core chain is useful if a group of vertices is known a-priori to be of interest. It

not only determines when those vertices are densely connected, but also any other vertices

as time goes on that are densely related. As an example use, we later explore 𝑘-seeded

core chain for research groups in co-author graphs where students change over time but the

group, which contains a lead professor as the seed set, remains a dense region.

5.3.2 𝑘-Majority Core Chains

Instead of following a set of seed vertices, a 𝑘-majority core chain follows the majority of

vertices from a given starting point.

98

Definition 5.11. Let 𝒢 be a temporal graph, D be the temporal hierarchy of 𝒢, and 𝑛 be

a vertex in D. The 𝑘-majority core chain is a core chain in D that is maximal with respect

to the path length and any tree node in the core chain layer path obeys the constraints: (1)

the edge leaving 𝑛 in the core chain is the edge with the largest number of multiedges and

(2) the depth of 𝑛 is at least 𝑘 .

A full decomposition provides the 𝑘-majority core chain for each node in the temporal

hierarchy.

This core chain is useful to identify a dense region that remains active over time, inde-

pendent of individual group membership. Later, we show that 𝑘-majority core chain is able

to find two communities of ants, one in which members stay close to the queen ant (called

nurses) and another in which members travel outside to find food (called foragers). These

communities persist, even though the ants themselves tend to move from being nurses to

being foragers over their lifespan [212].

Consider the example in Figure 5.4. If we want to compute the 1-majority core chain

starting from the 2-core at 𝑡 = 0, then the chain would progress to the 𝑘 = 1 core on the

right hand side, as this has the majority of vertices (9 vertices). If we find the 2-majority

core chain, then the chain would proceed to the 𝑘 = 2 core on the right hand side (with 7

vertices).

5.4 Computing Core Chains

In this section we describe how to compute core chains. Computation is broken into two

parts. First, we need to construct a datastructure to represent D. Second, we need to find

an appropriate layer path in D.

At a high level, we build D by focusing on shell movement instead of the full, vertex

movement (from Definition 5.7). This results in a much smaller multilayered graph that is

easier to maintain, but still supports fast enough queries to return paths. To compute paths

in D, the layer edges are enumerated by first walking up and down the tree, ensuring the

99

depth is at least 𝑘 , and collecting layer edges. Those layer edges are then traversed and

corresponding walking in the tree occurs in the next layer.

5.4.1 Shell Temporal Hierarchy

First, we introduce shells.

Definition 5.12. Let 𝐺 = (𝑉, 𝐸) be a graph and 𝐷 = (𝑇, 𝑀) be the density hierarchy for

𝐺. Consider some 𝑛 ∈ 𝑇 , at level 𝑘 . The shell is given by 𝑆(𝑛) = {𝑣 ∈ 𝑉 : 𝑀 (𝑣) = 𝑛}.

That is, the shell consists of vertices that are in a level 𝑘 , but not in any level (𝑘 + 1).

The shell of the root contains isolated vertices.

We introduce shell−D as a reduced form of D that only contains multiedges with

destinations that are in a shell.

Definition 5.13. Let 𝑇 be a time range, 𝒢 = [𝐺 𝑡 = (𝑉𝑡 , 𝐸𝑡)]𝑡∈𝑇 be a temporal graph, and

𝐷𝑡 = (𝑇𝑡 = (𝑁𝑡 , 𝐿𝑡), 𝑀𝑡) be the density hierarchy for time 𝑡 ∈ 𝑇 . Then the shell temporal

hierarchy is a multilayer multigraph shell−D = ([𝐺 𝑡]𝑡∈𝑇 , E), where

E =
⋃

[𝑡,𝑡+1]∈𝑇
(𝑡, 𝑡 + 1)×

⋃
𝑣∈𝑉𝑡∩𝑉𝑡+1

{𝑎, 𝑏} ∈ 𝑀 𝑡+1

𝑡 (𝑣) : ∃𝑚 ∈ 𝐿𝑡 , 𝑎 ∈ 𝑆(𝑚)

and ∃𝑛 ∈ 𝐿𝑡+1, 𝑏 ∈ 𝑆(𝑛)

 .
Using shells, we can capture the movement of vertices through dense regions in a much

more concise manner than saving the entire temporal hierarchy D.

In Figure 5.6 we show shell−D containing all edges between 𝑡 = 0 and 𝑡 = 1. Due to

the nature of the shells, it is possible to reconstruct D from shell−D: starting from every

node in the tree, duplicate the multiedges up to the root for every vertex in the shell.

Storage Complexity and Compression By using a shell structure we are able to signifi-

cantly reduce the storage requirements from storing the entire D.

100

𝑡 =
0

𝑡 =
1

Figure 5.6: A shell temporal hierarchy corresponding to the temporal hierarchy in Fig-
ure 5.4. By moving through the tree at each layer, the vertex movements can be recon-
structed.

Lemma 5.2. Let 𝑇 be a time range, 𝒢 = [𝐺 𝑡 = (𝑉𝑡 , 𝐸𝑡)]𝑡∈𝑇 be a temporal graph, and

shell−D be a shell density hierarchy for 𝒢. Let 𝑛 = min𝑡∈𝑇 |𝑉𝑡 |. Then shell−D has a

storage complexity of 𝑂 (|𝑇 | 𝑛).

Proof. At each time point, the hierarchy may arbitrarily change. However, the number of

edges is bound by the number of vertices in each layer. Furthermore, the density hierarchy

is bound by the number of vertices. Hence, the space is bound by 𝑂 (|𝑇 | (𝑛 + 𝑛)). �

Furthermore, we can apply a compression technique using 𝐶-trees. We store each layer

in shell−D as a separate root of a𝐶-tree. In effect, when the temporal structure is modified,

a new root is created. We store |𝑇 | roots, and |𝑇 | paths to modified structures. However,

we do not have to replace the entire shell−D structure at each time point.

This has a considerable cost savings when there are many time points that do not signif-

icantly change the hierarchy. In these cases, a common storage cost for a time points will

be 𝑂 (log 𝜌), as the density hierarchy between layers only needs to be modified slightly.

101

Algorithm 5.1: Computing shell−D using purely-functional data structures and
hierarchy maintenance algorithms

Input: temporal graph 𝒢 = ([𝐺 𝑡]𝑡∈𝑇)
Output: shell−D

1 𝐷 ← A(𝐺 𝑡0) ⊲ compute the first density hierarchy
2 𝐿 ← [𝐷𝑡0] ⊲ layers begins with the first hierarchy
3 E ← ∅ ⊲ no layer edges exist initially
4 for pair (𝑡, 𝑡 + 1) ∈ 𝑇 , ordered do
5 Δ𝑡+1 ← 𝐺 𝑡+1 − 𝐺 𝑡 ⊲ compute batch changes
6 𝑀Δ ← AΔ(𝐷,Δ𝑡+1) ⊲ maintain 𝐷 to get 𝐷𝑡+1, return 𝑀 changes
7 for 𝑣 ∈ 𝑀Δ do
8 E ← E⋃(𝑡, 𝑡 + 1, {𝑀𝑡 (𝑣), 𝑀𝑡+1(𝑣)})
9 𝐿 ← 𝐿

⋃
𝐷𝑡+1

10 return shell−D = (𝐿0, E) ⊲ 𝐿0 returns all density trees of 𝐿

5.4.2 Computing shell−D

The first component of computing core chains is building shell−D. To do this, we assume

that the density hierarchy has a maintenance algorithm. In the case of 𝑘-cores, we use [92].

Let the density hierarchy maintenance algorithm be AΔ.

The strategy is to begin at time 𝑡 = 0 with a density hierarchy 𝐷0 = (𝑇0, 𝑀0). However,

we store 𝐷0 in a purely functional data structure. Then, we runAΔ to proceed to 𝑡 = 1. This

will modify 𝐷0 to create 𝐷1 = (𝑇1, 𝑀1). However, as it is purely functional, the original

𝐷0 will be preserved. 𝐷0 and 𝐷1 become layers in shell−D.

We then need to compute the multiedges for E in shell−D. It is possible to simply

enumerate all vertices and directly compute their location from 𝑀0 and 𝑀1. However,

again due to the purely functional data structure, we can record the differences as we build

𝑀1 from 𝑀0. Each difference directly becomes an edge for E.

This process continues for each time point. The full algorithm is given in Algorithm 5.1.

5.4.3 Nuclei Hierarchies for Vertices

Recall that by Definition 5.3, a nucleus is defined as a hypergraph 𝑘-core in the (𝑟, 𝑠)-

hypergraph. This presents a problem when using it to produce hierarchies. We need a

102

Algorithm 5.2: Computing contracted nuclei
Input: graph 𝐺 = (𝑉, 𝐸), 𝑟-cliques 𝑅, nucleus density hierarchy 𝐷 = (𝑇, 𝑀)
Output: contracted density hierarchy 𝐷

1 for 𝑣 ∈ 𝑉 do
2 𝑋 ← ∅
3 for 𝑟 ∈ 𝑅(𝑣) do
4 𝑋 ← 𝑋 ∪ 𝑀 (𝑟)
5 𝐷 ← MergePaths(𝐷, 𝑋) ⊲ MergePaths from [92]

6 return 𝐷

mapping from every vertex to a node in the hierarchy, so that the vertex movement (Defini-

tion 5.7) between parts of the hierarchy can be identified. In the (𝑟, 𝑠)-hypergraph, a vertex

corresponds to an 𝑟-clique, which for 𝑟 > 1 is a set of vertices in 𝒢.

In order to provide a coherent hierarchy for vertices, instead of 𝑟-cliques, we contract

and merge the nodes in the hierarchy tree which have multiple vertices in them. We call

the resulting hierarchy a contracted nuclei hierarchy. As the size of the tree is very small

compared with the size of the graph (for graphs with millions of vertices, trees typically

have hundreds or only a few thousand nodes [92]), we compute the contracted nuclei from

scratch for each time point. The idea is to simply merge all tree nodes that a vertex is in.

The full algorithm is given in Algorithm 5.2.

5.4.4 Computing 𝑘-seeded core chains

To compute a 𝑘-seeded core chain, we need to follow through layers in shell−D appropri-

ately, ensuring that we always retain the seed set in the current link in the chain. We start

with a seed set of vertices, 𝑆. We iterate through time linearly. Suppose we are at time 𝑡,

with the density hierarchy 𝐷𝑡 = (𝑇𝑡 , 𝑀𝑡). We then compute the mapping for each of the

vertices in 𝑆. There are two possible cases: either there is no suitable region, and the chain

is finished; or, all of the vertices in the seed set are in some 𝑘′ ≥ 𝑘 region, and we can

continue the chain including the largest such 𝑘′ region.

The full algorithm is presented in Algorithm 5.3.

103

Algorithm 5.3: Computing 𝑘-seeded core chains
Input: shell−D, 𝑘 , seed set 𝑆, ordered time range 𝑇
Output: 𝑃, set of sets of dense regions

1 𝑃← ∅
2 𝐶 ← ∅
3 for 𝑡 ∈ 𝑇 do
4 𝑘∗ ← min𝑣∈𝑆 𝜅 [𝑘]
5 if 𝑘∗ < 𝑘 then

⊲ The region is not dense enough
6 𝑃← 𝑃 ∪ 𝐶
7 𝐶 ← ∅
8 continue ⊲ Stop chain, continue

9 𝑛← node at level 𝑘∗ in shell−D containing any 𝑠 ∈ 𝑆
10 if 𝑆 * vertices(𝑛) then

⊲ Not all seed vertices are in the region
11 𝑃← 𝑃 ∪ 𝐶
12 𝐶 ← ∅
13 continue ⊲ Stop chain, continue

14 𝐶 ← 𝐶 ∪ {𝑛} ⊲ Continue chain with 𝑛

15 𝑃← 𝑃 ∪ 𝐶
16 return 𝑃

Algorithm 5.3 runs in 𝑂 (|𝑇 | 𝜌𝑆). It runs linearly over all time. In each, it first finds the

minimum density value 𝜅 for each seed set vertex. It then extracts the node at the minimum

density for any vertex in the seed set. Next, it needs to check whether all vertices in 𝑆 are

present in the hierarchy. By efficiently implementing inclusion checks with hash tables, it

is possible to check this in time 𝜌𝑆, moving up the tree in shell−D and checking each level

in the hierarchy for shell values that contain the element 𝑠 ∈ 𝑆.

5.4.5 Computing 𝑘-majority core chains

Next, we describe how to compute 𝑘-majority core chains. Instead of starting from a seed

set, as in 𝑘-seeded core chains, we need to start from a given node and compute the best

next node to move to, at the next time point. Starting at the given node, we visit all layer

multiedges as we perform a 𝑘-limited tree enumeration. The goal is to find the tree node

that has the largest number of multiedges that go to either it or any deeper level below it.

104

Algorithm 5.4: Computing 𝑘-majority core chains
Input: shell−D, 𝑘 , starting node 𝑛, ordered time range 𝑇
Output: 𝑃, set of dense regions

1 𝑃← {𝑛}
2 for 𝑡 ∈ 𝑇 do
3 𝐶 ← ∅
4 𝐻 ← Heap()

⊲ Starting at 𝑛, walk the layer, staying within 𝑘
5 for node 𝑚 at level ≥ 𝑘 connected to 𝑛 do
6 for (𝑡, 𝑡 + 1, {𝑚, 𝑥}) ∈ E do
7 if 𝑥.𝑘 < 𝑘 then continue
8 𝑥.count← number of (𝑚, 𝑥) edges
9 𝐻.push(𝑥)

10 for 𝑥 ∈ 𝐻 do
⊲ Following heap order, largest height first

11 𝐶 ← 𝐶 ∪ {(𝑥.count, 𝑥.𝑘, 𝑥)}
12 𝑥.parent.count← 𝑥.parent.count + 𝑥.count
13 𝐻.push(𝑥.parent) ⊲ Heap removes duplicate entries

14 if 𝐶 = ∅ then return 𝑃
15 𝑛← arg max𝑥∈𝐶 (𝑥.count, 𝑥.𝑘)
16 𝑃← 𝑃 ∪ {𝑛}
17 return 𝑃

105

Walking across the layer, we push the number of multiedges into the next layer. Then, we

walk backwards down from the next layer, and capture all of the multiedge counts into the

nodes at level 𝑘 .

The full algorithm is presented in Algorithm 5.4.

Algorithm 5.4 runs in 𝑂 (|𝑇 | 𝜌 log 𝜌), due to the use of the heap. Each tree walk occurs

in 𝑂 (𝜌) time and there can be at most 𝜌 elements in the heap. Finally, the algorithm runs

for at most 𝑇 iterations, computing and potentially adding to the result at each time.

5.5 Evaluation

In this section we evaluate the overall core chain approach and explore the quality of results

with our two concrete core chains. We consider three use cases: the first is a study of

research groups using publication data, which we compute 𝑘-seeded core chains on, the

second are trust networks of Bitcoin over-the-counter traders, which we compute 𝑘-seeded

core chains on, and the third is a behavioral study of ants, which we compute 𝑘-majority

core chains on. We choose 𝑘-seeded core chains for the first two as we want to understand

the dense regions the seed set is in. We choose 𝑘-majority core chains for the third, as we

want to understand the behavior of a group of ants, not any ants in particular.

5.5.1 Identifying Research Groups

We look at the use case of identifying a research group at a university. The objective is to

begin with publication data, namely a co-author graph, and identify a research group even

as it changes over time. We started with the Microsoft Academic Graph from December

2021 [237]. We extracted papers and authors, and created a clique in the co-author graph for

every paper. If a paper had too many authors, we excluded it, as these likely indicate joint

work between multiple labs. We explored several thresholds and chose 5 as the threshold,

as results did not change much with larger numbers, but the computational complexity

increased due to the increase in cliques.

106

1990 2000 2010 2020

A
u

th
o

rs
 (

22
5

to
ta

l)

Group U. Catalyurek B. Hendrickson Both

Figure 5.7: Two research groups, in blue and orange, identified through the co-authorship
graph using (3, 4)-nuclei. There are two clearly distinct research groups which evolve over
time. No researchers are in both groups concurrently, but several move between groups.

We then computed two 𝑘-seeded core chains, one with Ümit V. Çatalyürek as a seed

vertex and the other with Bruce Hendrickson. These entries were chosen as they represent

distinct, but close, research groups—increasing the difficulty of any approach to distinguish

them—and we have ground truth available on lab memberships. We used a two-year age

out time for research papers, as two years is a reasonable time for a collaboration resulting

in a paper.

In Figure 5.7 we show the (3, 4)-nucleus 𝑘-seeded core chains for both research groups.

The groups are distinct, and include membership from one set to another. As an example,

Karen Devine is in the same dense region as Bruce Hendrickson, and then between 2004

and 2006 switches into the same dense region as Ümit V. Çatalyürek. Many of the members

identified in the research group are Ph.D. students and postdocs. This dense structure is not

107

1990 2000 2010 2020

A
u

th
o

rs
 (

95
77

 t
o

ta
l)

Group U. Catalyurek B. Hendrickson Both

Figure 5.8: Research groups identified through the co-authorship graph using cores ((1, 2)-
nuclei). Compared with Figure 5.7, there is overlap and less coherent group structure,
showing the importance of higher order nuclei.

captured simply by co-authors of the seed set, as those contain many more individuals with

much looser relationships. As Bruce Hendrickson moved more into upper level manage-

ment roles after 2010, his research group broadened, and this change to the structure is

additionally shown through the core chain.

We next look at lower order nuclei. In Figure 5.8, we show the core structure (that is,

the (1, 2)-nuclei). The structure here is much looser and the number of identified research

group members is close to 10, 000. This highlights that higher order nuclei are critical;

neither research group had close to this many members. In the middle, around 2010, there

are many vertices that are identified as being in both research groups. While there was

significant collaboration, the research groups themselves never merged.

In Figure 5.9 we show the same use case but using span-cores [97] instead of core

108

1990 2000 2010 2020

A
u

th
o

rs
 (

7
v
al

id
)

Group U. Catalyurek B. Hendrickson Both

Figure 5.9: Research groups identified with span-cores in the co-authorship graph. Span
cores only survive for a very small period of time due to the continual churn in research
groups. This similarly holds for other vertex-focused approaches.

109

1990 2000 2010 2020

A
u

th
o

rs
 (

10
 v

al
id

 /
 9

8
d

is
ta

n
t)

Group U. Catalyurek B. Hendrickson Both

Figure 5.10: Research groups identified with DLCP in the co-authorship graph. There is
only one group.

chains. Unfortunately, as a vertex-focused approach, there are no dense regions that last

very long. Research groups are too volatile. As such, close to one time point, even at

different age out periods, is returned. Vertex-focused approaches are not able to identify

such continuously changing research groups.

In Figure 5.10 we show the results with diversified lasting cohesive subgraphs [167],

denoted DLCP. After performing a parameter sweep for 𝑘 , 𝑟, and 𝜎, this was the best

available result, with 𝑘 = 4, 𝑟 = 2, and 𝜎 = 5. Here, DLCP again has a vertex-focused

result—there is no temporal change in the found subgraph. There are 10 authors that were

identified by 𝑘-majority core chain as well during the time, and those appear to be in the

correct research group. However, there are 98 authors that are included in the dense, co-

hesive region that would not be considered part of the research group: for example R.

Shuttleworth, who has no publications with the group or its close collaborators.

110

1990 2000 2010 2020

A
u

th
o

rs
 (

31
 v

al
id

 /
 2

52
 d

is
ta

n
t)

Group U. Catalyurek B. Hendrickson Both

Figure 5.11: Research group identified with MBC in the co-authorship graph. The group
contains a large number of authors that are not in the same research group.

111

In Figure 5.11 we show the results of computing maximal bursting cores (MBC) [207].

We again performed a parameter sweep, and show the best result here. Unfortunately,

the bursting core period covers almost all of the range. There are 252 authors there were

identified as being in the core that are quite distant from the target research group, including

members such as O. Ohia, publishing in specific physics fields. Importantly, this approach

similarly cannot capture temporal regions that are changing over time, as the focus is on

static vertex sets.

Of the baseline algorithms, span-cores produce the best results. As such, in the follow-

ing we focus on comparing against span-cores.

5.5.2 Bitcoin Trust Network

We next look at a trust network of over-the-counter (OTC) Bitcoin users [150, 149]. Here,

data was collected from the #bitcoin-otc web of trust network. We call fraudulent users

bad and legitimate users good. Each vertex in the graph is a user. Edges represent a

vote of a user’s understanding of whether another user is bad or good. Specifically, each

edge is temporal, weighted, and directed. The source represents the user making the trust

evaluation, the destination represents the user being evaluated, and the weight (from −10

to 10) reflects the trust evaluation itself. A negative value means the source recommends

not trusting the destination and a positive value means the opposite, and the farther the

evaluation from 0 the higher the source’s confidence in the rating. Note that as this is an

anonymous system it is vulnerable to Sybil attacks [63] and so it is not possible to simply

sum up the negative or positive values: any number of users can easily be created and these

users can vote, so a very large positive value is not necessarily meaningful.

Kumar et al. [150, 149] provide algorithms and approaches that identify the bad users

with high accuracy and recall. We are not developing an approach to classify bad users;

instead, we want to find cohesive groups that are good or bad. A cohesive bad group, for

example, may represent a single entity that is creating bad OTC users that all support each

112

2011 2012 2013 2014

O
T

C
 U

se
r

Group Good Bad Both

Figure 5.12: The results of running (3, 4)-nuclei 𝑘-seeded core chains for a good user
(user 1) and a bad user (user 905). There are two distinct dense regions. User 905 is active
before 2012, however they are not part of any dense region. It is possible they attempt to
correct their rating with fraudulent bots after 2012.

other. We assume that we start with a seed user, who is known to be either good or bad. In

our experiments, we use the ground truth computed from [149] to choose a seed good and

bad node. To exercise our approach, we choose arbitrarily chose the first two users that we

found that were (1) active in overlapping time ranges and (2) had ground truth. Our seed

vertices are the user 1 (good in the ground truth, also the site creator) and user 905 (bad in

the ground truth, and potentially built up for a large scam over time).

As our approach only operates on simple graphs, those that are undirected and without

weights, we only keep positive weighted edges and symmetrize the graph. We choose an

age out period of two months.

The results of running (3, 4)-nuclei based 𝑘-seeded core chains with the two different

seed sets are shown in Figure 5.12. There are 30 identified good users and 34 bad users.

113

2011 2012 2013 2014

O
T

C
 U

se
r

Group Good Bad Both

Figure 5.13: The densest span-cores returned with user 1 (good) and user 905 (bad). The
dense span-core with user 905 also had user 1, and so is marked as in both group.

Evaluating against the ground truth from [149], there is one false positive good user and

three false positive bad users. We have 12 true positive good users and 3 true positive bad

users. This results in a precision of 0.92 for good and 0.5 for bad. Note that there are

only 316 ground truth entries out of 5881. There are two clearly distinct core chains, and

both the good and bad core chain changes over time as users become inactive. The false

positives for bad users occur early on, potentially even when user 905 was acting good.

In Figure 5.13, we show the results of the same experiment running span-cores. We

extracted the densest regions with both the seed 1 and the seed 905. As expected, the

longest densest region was only one time point in both cases, as dense regions undergo

continual internal change. For all tested seed users, the results are similar: there is too

much churn to find meaningful temporal regions with vertex-focused approaches.

114

5.5.3 Tracking Ant Behavior

In [190, 212] ants are placed in a controlled environment and given unique tags. An infrared

camera is used to capture the position and movement of all of the ants. If two ants move

close together, are facing each other (within a certain angle range), and then move apart,

the behavior is categorized as an interaction. In [190, 212], the ants were classified both

spatially and through such interactions, and the research teams uncovered that ants both

have defined roles and change those roles over their lifespans. While queen ants can live

for decades, other ants tend to have short life spans—measured in days or weeks [190].

A nurse is an ant that stays close to the queen and assists with new ants and management

of the queen. A forager is an ant that leaves the nest, explores, and attempts to bring food

back into the nest. In [190, 212] these roles were identified as the two main ant roles. The

researchers used a mixture of spatial tracking and interaction tracking to identify the two

roles. The data in [190] is publicly available at a granularity of one day, however the ground

truth manual analysis was only performed on ten day intervals.

In Figure 5.14 we show the results of finding a 𝑘-majority core chain on the interaction

data of an ant colony over time. The experiment was run for 41 days. In orange we show

when an ant is part of the 𝑘-majority core chain built from (2, 4)-nuclei and starting with

nurse ants, and in blue we show ants classified as nurses by [190]. We chose an age out

period of 1 day. Green shows ants that were classified by both as nurses. While 𝑘-majority

core chain has daily resolution given the data, the baseline ground truth study was broken

into 10 day chunks to try to stabilize the community detection and to ease manual analysis.

In the original work, an interaction per day threshold was used to filter the graph and only

include edges with at least some threshold number of interactions per day. We perform

the same preprocessing and use a threshold of 12. To compare results, we also smooth the

results to 10 day chunks by looking for the inclusion of an ant in the 𝑘-majority core chain

within the 10 days to mark the ant. There are 59 overlapping blocks, 362 blocks that are

both empty, 16 in [190] but not in the 𝑘-majority core chain, and 15 in the 𝑘-majority core

115

0 10 20 30 40

Day

A
n

t

Alg. k−MCC only Ground Truth only Both

Figure 5.14: The performance of 𝑘-majority core chain for finding nurse ants, starting with
the (2, 4)-nuclei that contains the largest number of nurses initially, compared against the
manual temporal construction of ant behavior by [190], with jointly labeled ants in green.
The 𝑘-majority core chain follows the temporal behavior for many of the ants. White
blocks indicate ants that are not categorized as nurses by both algorithms. Ideal case would
be entirely green and white.

116

0 10 20 30 40

Day

A
n

t

Alg. Span−Cores only Ground Truth only Both

Figure 5.15: The same experiment as Figure 5.14, but showing span-cores instead. There
are no span-cores with nurses that survive for beyond one temporal block. Ideal case would
be entirely green and white.

chain and not in [190].

In Figure 5.15 we show the results of computing maximal span-cores [97]. We identify

this problem as stemming from the inherently temporal nature of the dense regions, result-

ing in vertices coming and leaving dense regions. There are 24 overlapping blocks, 293

blocks that are both empty, 85 in [190] but not in the span-core, and 50 in the span-core

but not in [190]. In particular, the span-core exists for only one temporal period, making

it ineffective as a temporal dense region. Similar results occur for [207]. In [167], only

one bursting diversified 𝑟-core was found, from time 1 to 2, with all ants included. Unfor-

tunately, all available vertex-focused approaches are not able to find any temporal dense

regions.

We chose (2, 4)-nuclei as it robustly provided an interesting hierarchy. In many cases,

117

r: 1 r: 2 r: 3 r: 4

s: 2
s: 3

s: 4
s: 5

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Interaction per Day Threshold

F
−

S
co

re

Age Out (Days) 1 2 3 4

Figure 5.16: The 𝐹1-score for separating nurse ants from other ants with different nuclei,
interaction per day thresholds, and age out times for interactions. The maximum 𝐹1-score is
with (2, 5)-nuclei, a 12 interaction threshold, and an age out of 3 days. Span-cores achieve
an 𝐹1-score of 0.26.

118

r: 1 r: 2 r: 3 r: 4

s: 2
s: 3

s: 4
s: 5

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Interaction per Day Threshold

S
p

ec
if

ic
it

y

Age Out (Days) 1 2 3 4

Figure 5.17: The specificity for separating nurse ants from other ants. This is important,
as we want to avoid labeling everything as being in the dense region. Span-cores achieve a
specificity of 0.76.

119

0 10 20 30 40

Day

A
n

t

Alg. (2,5)−k−MCC only Ground Truth only Both

Figure 5.18: The performance of 𝑘-majority core chain for finding nurse ants, starting with
the (2, 5)-nuclei, which has the highest 𝐹1-scores and higher specificity than (2, 4)-nuclei
based core chains.

(1, 𝑠)- and (2, 3)-nuclei provide a single dense region, which is not able to tease out dif-

ferent characteristics, such as groups of ants. We show the 𝐹1-score of different nuclei,

age out periods, and interaction thresholds per day in Figure 5.16. The highest 𝐹1-score

is 0.76, with (2, 5)-nuclei, an 12 interaction per day threshold, and an age out period of 3

days. In Figure 5.14, the (2, 4)-nuclei we show with a 12 interaction threshold and an age

out period of 1 day has an 𝐹1-score of 0.68. From the results the best scores tend to be in

the threshold range from 10 to 15, with 𝑟 = 2. With a longer age-out period, in many cases

a higher threshold is required for the same 𝐹1-score. Additionally, as 𝑟 and 𝑠 increase, the

threshold tends to need to be lower, meaning more data is required.

From the results, having 𝑟 = 1 is less useful for this dataset, and at 𝑟 = 4 the quality

appears to begin to drop off. In Figure 5.17 we show the specificity, which focuses on the

120

true negatives. We do not want to classify everything as being in the dense region, as that

removes the purpose of finding a dense region. From these results, it becomes clear that the

(2, 5)-nuclei perform well, while retaining high 𝐹1-scores. Span-cores achieve a specificity

of 0.76, which again is below almost all nuclei core chain variants. In Figure 5.18 we plot

the (2, 5)-nuclei 𝑘-majority core chain along with the provided ground truth. Similar to

with (2, 4)-nuclei, many of the temporal dynamics of individual ants are captured. Even

more so than with (2, 4)-nuclei there is evidence of a main result of [190], showing that

ants start as nurses and then move away as time goes on.

Exploring a systematic method to select the appropriate nuclei for a core chain is an im-

portant avenue for future exploration. An effective heuristic could potentially incorporate

preprocessing to choose suitable thresholds and nuclei together. Additionally, developing

approximations to address even higher order nuclei would likely improve the results further.

5.6 Summary

We address the increasingly important problem of identifying dense regions in temporal

graphs, those with historical information. We identify that vertex-focused definitions are

not appropriate when the temporal, dense regions themselves are changing. We present a

new temporal dense region, called core chains. Core chains are defined as paths between

nodes in the dense hierarchy at different times in the graph. We propose two concrete core

chains, a 𝑘-seeded core chain which ensures that seed vertices are always in the chain, and

𝑘-majority core chains, which follow the majority of vertex movements between points in

the dense hierarchies. We implement core chains using nuclei, a generalization of graph

cores that include richer and more stable hierarchies. Together, we show that these two

core chains are able to find useful and important regions through three use cases: co-author

graphs that can identify research groups, trust networks that can find cohesive entities of

good and bad users, and ant interaction graphs that can uncover behavior of ants over time.

We achieve 𝐹1-score improvements of up to 0.5 higher than prior state-of-the-art results.

121

CHAPTER 6

LOADING AND SAVING MASSIVE GRAPHS

There is significant work developing highly optimized sparse linear algebra and graph sys-

tems, including competitions for graph kernels [219] and sparse machine learning [139],

programming models and corresponding high-performance libraries [234, 23, 199, 182],

and full graph databases [27]. These all focus on providing high-performance kernel run-

times for a variety of datasets. In this chapter, we are not providing yet another com-

putational graph library or a new graph programming model. Instead, we address an

important—yet largely overlooked—aspect of using and developing sparse graph and ma-

trix systems: the input and output (I/O). Our focus is on shared-memory multi-core servers.

We show that graph I/O is frequently the single slowest factor in the end-to-end perfor-

mance of otherwise fast computations. On billion-scale graphs, reading a graph easily

takes over 2000× longer than running a computational kernel.

In many cases implementations have stuck with sequential I/O, presumably under a

longstanding belief that parallel I/O is not achievable without a dedicated parallel I/O sys-

tem. In the literature, graph and matrix I/O times are rarely reported and, hence, not highly

optimized. While it is the case that SATA serializes disk access [246], implementing only

sequential I/O misses three major and common opportunities for parallelism. First, a hard-

ware Redundant Array of Inexpensive Disks (RAID) controller can read from multiple

drives over separate SATA connections in parallel [203]. Second, Non-Volatile Memory

(NVM) is now widely deployed [133] and provides parallelism through both SSDs and

the NVM express (NVMe) interface to motherboards [246]. Last, file systems themselves

include tuned and effective caches, supporting parallel reads and writes [181]. In these

cases, reading and writing in parallel can provide a significant end-to-end improvement for

applications.

122

X

R:EL + BFS R:CSR + BFS

G
al

oi
s

G
A
Pbs

Li
gr

a

PIG
O
+G

al
oi

s

PIG
O
+G

A
Pbs

PIG
O
+Li

gr
a

G
al

oi
s

G
A
Pbs

Li
gr

a

PIG
O
+G

al
oi

s

PIG
O
+G

A
Pbs

PIG
O
+Li

gr
a

0

5

10

15

20

0

100

200

300

T
im

e
(s

ec
)

BFS

Load

Figure 6.1: Edge list (R:EL) and binary (R:CSR) read times and BFS runtimes for com-
Friendster, a social network graph with 65 M vertices and 3.6 B edges. Note the differing
scales between R:EL and R:CSR. Using PIGO significantly improves end-to-end runtimes
for all systems, bringing them much closer to kernel runtimes. Galois did not finish R:EL
within several thousand seconds.

Our goal is to remove the burden of building efficient I/O. We target two types of users:

the researcher, who is developing a single graph kernel and does not care about the produc-

tion readiness of the code; and the developer, who is building a graph library for production

level end-user use.

Importantly we need to be useful for researchers who want to test out a kernel idea

quickly without buying into a large, complex graph system, complete with a steep learning

curve and powerful, yet complex programming models. We do not want researchers to

have to stick with a particular graph format, spend energy converting between them, or

designing ad-hoc binary formats with potentially subtle errors. At the same time, we seek

to provide best-in-class performance.

To achieve our goal, we provide PIGO1, a small, C++11 header-only library. PIGO

takes in a filename and returns the graph loaded into memory. Compared against optimized

and parallel graph loading in state-of-the-art libraries or simple, ad-hoc loading, we show

1Available at https://github.com/GT-TDAlab/PIGO.

123

https://github.com/GT-TDAlab/PIGO

that using PIGO can quickly increase both productivity and end-to-end performance. In

Figure 6.1, we show three leading graph libraries [234, 23, 199] running breadth-first search

(BFS) on a large graph. When running without PIGO, it takes over one hundred seconds

to load from ASCII edge list file and 0.01 seconds to run. With PIGO, the loading time is

reduced to 3.5 seconds (from an edge list) or 0.5 seconds (from a binary compressed sparse

row).

PIGO enables dynamic graph algorithms to quickly load edge list streams and graph

checkpoints, ultimately reducing the query staleness as end-to-end runtimes increase.

6.1 PIGO I/O Library

6.1.1 Requirements

PIGO is built to satisfy the following requirements.

Requirement 6.1. Fast enough to make effective use of modern hardware and operating

system’s parallel I/O performance.

Requirement 6.2. Support for common front-end and back-end graph formats, removing

the need for slow and ad-hoc preprocessing, including weights, symmetry, and directed-

ness.

Requirement 6.3. Easy and useful integration with both graph analysis systems and one-

off graph and matrix programs.

We address these requirements through our design. First, we read in parallel and we

decode bytes directly into integers, floats, comments, or spaces. Our library was devel-

oped with performance as a goal and written carefully as such. For example, we limit

unnecessary runtime code through template parameters which importantly avoids branch

mispredictions.

As a library focused solely on I/O, we are able to address Requirement 6.2 by ensuring

we can quickly add new formats. Front-end formats are graphs that are stored on disk,

124

Back-End

(memory)

Edge List (EL)

Adjacency List (AL)

.mtx, .txt, .el, .edges, …

.graph, …

Processed (CSR)

.pigo, .gr, .sg, .adj, …

Coordinate list (COO)

Compressed

sparse row (CSR)

PIGO

Uses memory for

computation

Graph/Matrix System

Front-End

(files)

Desired back-end format

vertex/edge types, symmetry,

directedness, …

Figure 6.2: As an I/O library, PIGO takes a desired back-end configuration from the com-
putation system and transforms the front-end appropriately.

downloaded, and used in graph pipelines. The two main formats are edge lists (EL) and

adjacency lists (AL), both of which are ASCII encoded. On the back-end, we currently

support two structures. The first is a coordinate list (COO), which stores non-zeros with

their explicit row and column coordinates, and the second a compressed sparse row (CSR),

which stores non-zero elements in a single contiguous block of memory and a separate

offsets block that stores the beginning of rows. At the moment we support several basic

preprocessing steps such as removing self loops and symmetrizing the graph. Current

and future work includes more robust preprocessing and support for additional formats.

Figure 6.2 shows PIGO’s high-level design meeting this requirement.

Finally, we build PIGO to be a C++11 header-only library, allowing it to be easily

integrated into projects and systems. The programming interface is designed to be simple

to learn and quick to use, as shown in Section 6.1.3. For further usability, we have an

experimental port which wraps PIGO into a shared object, making it potentially available

to applications in C, Rust, Python, and more.

125

6.1.2 Overview

PIGO reads in parallel from a variety of ASCII files along with custom binary files. Read-

ing binary files is straightforward: the size information for data can be quickly encoded

and read from the file header, and the transfer itself consists of parallel and independent

memcpy calls. ASCII files, however, are the standard file format for both large and small

sparse matrices [143] and graphs [214].

PIGO handles ASCII files with two passes. First, PIGO loads the input file into memory

via mmap2. In the first pass, the structure is read out in parallel. That is, the number of

spaces, newlines, and integers are counted—while ignoring comment lines and end-of-line

comments. After this, memory is allocated and a prefix sum is performed so each thread

knows its position in the back-end memory to write to. The second parallel pass then

iterates over the file again, parses the integers and copies out the data.

6.1.3 Application Programming Interface

PIGO is used by declaring a back-end format and providing a filename as input. PIGO then

loads the file in parallel and converts it appropriately into the requested back-end structure.

Parameters, such as the data types to use inside the matrix and preprocessing flags, such as

whether to symmetrize the matrix, are given as template parameters.

In Figure 6.3 we show the main concept of our API. Our complete API is documented

in our repository.

Label contains the type of the row or column (or vertex) labels. In many cases, it

can be a 32-bit unsigned integer. The Ordinal type contains the type that will count

(hence ordinal). If the number of edges is large, this may need to be 64-bit. The Storage

types indicate how PIGO should allocate the memory. PIGO supports raw pointers (T*),

vectors (std::vector<T>), and shared pointers (std::shared ptr<T>). Finally,

2mmap is a POSIX-compliant call to place the file contents into memory, making the whole file available
as a char*.

126

1 COO<Label, Ordinal, LabelStorage, Flags> COO { filename };
2 void COO.save(filename);
3 LabelStorage COO.x(); // Get row labels
4 LabelStorage COO.y(); // Get col labels

6 CSR<Label, Ordinal, LabelStorage, OrdinalStorage, Flags> CSR {
filename };

7 void CSR.save(filename);
8 LabelStorage CSR.endpoints();
9 OrdinalStorage CSR.offsets();

11 Graph { filename } : CSR;
12 EdgeIt Graph.neighbors(Label v);

14 Matrix { filename } : CSR;
15 RowIt Matrix.row(Label r);

Figure 6.3: The high-level API for PIGO.

1 #include "pigo.hpp"
2 #include <iostream>
3 int main(int argc, char** argv) {
4 pigo::Graph g { argv[1] };
5 for (auto n : g.neighbors(123))
6 std::cout << n << std::endl;
7 return 0;
8 }

Figure 6.4: An example program using PIGO with default template values.

the Flags are used to indicate various preprocessing steps, for example to symmetrize the

file or to remove self loops.

6.1.4 Example Programs

Here we show two examples. The first is a simple standalone program that a researcher

might write to develop a new graph kernel. To install PIGO, only a single pigo.hpp file

is needed. The complete example can be seen in Figure 6.4.

For the next example, we show how to extend Ligra [234] to PIGO+Ligra, allowing

it to take advantage of significantly improved binary and ASCII loading. The function

127

1 template <class vertex>
2 graph<vertex> readGraphFromFile(char* fname, bool, bool) {
3 pigo::Graph<uintE, uintT,
4 uintE*, uintT*> g {fname};
5 long n = g.n();
6 long m = g.m();
7 uintT* offsets = g.offsets();
8 uintE* edges = g.endpoints();
9 // Continue with remaining Ligra code

10 ...
11 }

Figure 6.5: A replacement readGraphFromFile function for Ligra. This will cause
Ligra to read with PIGO, resulting in PIGO+Ligra.

readGraphFromFile is replaced with the code in Figure 6.5. As PIGO takes care of

reading the file, and can handle preprocessing steps, all that needs to occur beyond the

PIGO call is building Ligra’s vertex objects.

6.1.5 Algorithm Details

There are two main problems reading ASCII files. The first is if we evenly partition the

data into chunks, the partitions may not line up on clean integer boundaries. The second is

that the destination to write to in memory is not known apriori. We solve the first problem

by adjusting the start and end boundaries locally for each thread. Concretely, each thread

finds either the next newline or the next integral character and sets that as the thread data

boundary. For 𝑃 threads, this can result in up to 𝑃 additional reads of bytes, however for

any reasonable file the number of bytes overlapping between segments is a small constant.

Solving the next problem is done via the two passes described in Section 6.1.2. Note that

these passes are done in parallel. We parallelize with OpenMP.

To make this more concrete, we present the core idea for reading AL in Algorithm 6.1.

A visual example is shown in Figure 6.6. EL reading is similar but more simple, as 𝑁 only

needs to contain newlines. Binary reading and writing simply reads or writes in parallel at

byte boundaries.

128

Algorithm 6.1: The core idea of the AL reading.
Input: memory mapped file 𝐹

1 𝑁 [1, . . . , num threads] ← 〈0, 0〉
2 for chunk 𝑐 ∈ 𝐹 do in parallel
3 𝑡 ← thread ID
4 𝑁 [𝑡] ← 〈 integer count , newline count 〉
5 allocate offsets, endpoints
6 prefixSum(𝑁)
7 for chunk 𝑐 ∈ 𝐹 do in parallel
8 〈𝑒, 𝑣〉 ← 𝑁 [𝑡]
9 foreach integer in 𝑐 do

10 endpoints[𝑒] ← data
11 if passed newline then
12 offsets[𝑣] ← 𝑒

13 𝑣 ← 𝑣 + 1
14 𝑒 ← 𝑒 + 1

% vertex and edge counts could be given here

% format: line "k" is vertex k's neighbors

4 5 % space separated list of vertex one's neighbors

3 % list of vertex two's neighbors

9 8 7 5 4 2 1 % etc.

3 6 9

1 3 8

8 4 3 2 10 4

8 9

7 9

7 8 % these three last lines form a triangle

2

1) Get initial chunk

2) Adjust boundaries

9 8 7 5 4 2 1

3 6 9

1 3 8

8 4 3 2 10

3) Count and prefix sum

Newlines = 3; Integers = 18

4) Copy to allocated space

Each thread:

Copy vertex 3's neighbors to

the endpoint starting at pos. 4

Figure 6.6: An example reading an AL in PIGO.

129

cold cache warm cache

fread
mmap

parallel mmap fread
mmap

parallel mmap

0

5

10

15

T
im

e
(s

ec
)

fread mmap parallel mmap

Figure 6.7: A microbenchmark showing the worst-cast (cold cache) read times of 10GB
of random data with a parallel mmap and sequential strategies.

6.2 Experiments and Results

In this section we present experiments and results. We want to demonstrate that PIGO

can read ASCII and binary files significantly faster than known graph systems, providing

significant end-to-end improvements.

As exemplar graph systems, we use Ligra [234], GAPbs [23], and Galois [199]. We

compiled with GCC 9.1.0 and ran on a machine with 1TB of RAM, an Intel DC P3700 2TB

NVMe SSD connected with PCIe 3.0, and two 18-core Intel Xeon E5-2695 v4 CPUs at 2.10

GHz. We ran Ubuntu 16.04 with ext4. Our datasets are from the Network Repository [214]

and SuiteSparse [143].

In Figure 6.7 we show the potential parallel improvement for reading a large binary file

starting from an empty, or cold cache. A warm cache is common when running multiple

experiments or using a freshly downloaded file. With NVMe, even a cold cache has parallel

potential. When the cache is cold, reading in parallel is around twice as fast as reading

sequentially. However, with warm caches, the memory of the system becomes a factor.

Here, reading in parallel is 15 × faster and gets close to the system memory bandwidth.

We stress there is a significant room for I/O improvement beyond simply reading bytes

130

R:EL R:CSR R:EL + W:CSR

co
m

−Fr
ie

nds
te

r

UK−20
02

co
m

−O
rk

ut

so
c−

Li
ve

Jo
urn

al
1

ro
ad

−USA

co
m

−Fr
ie

nds
te

r

UK−20
02

co
m

−O
rk

ut

so
c−

Li
ve

Jo
urn

al
1

ro
ad

−USA

co
m

−Fr
ie

nds
te

r

UK−20
02

co
m

−O
rk

ut

so
c−

Li
ve

Jo
urn

al
1

ro
ad

−USA

1e−01

1e+00

1e+01

1e+02

1e+03

T
im

e
(s

ec
)

Galois GAPbs Ligra PIGO

Figure 6.8: I/O times for tested graphs with GAPbs’s I/O, Ligra’s I/O, and PIGO. Graphs
are arranged in size, with com-Friendster at 31 GB on disk and road-USA 940 MB.

0

1

4

16

1 2 4 8 16 32 64

Number of Threads

T
im

e
(s

ec
)

R:EL R:CSR R:EL + W:CSR

Figure 6.9: A scalability study showing the impact of increasing threads on UK-2002. The
NUMA boundary is reached at 18 cores, after which scalability only continues to increase
for ASCII processing and COO to CSR conversions.

131

in parallel, as evidenced by PIGO’s overall performance gains. In Figure 6.8 we show the

loading times for graphs both from EL and from preprocessed binary formats along with

their conversion times. Galois uses mmap internally for binary files. Our parallel reading

remains faster. Their ASCII file processing, however, is too slow to use in production. In

fact, for Ligra and GAPbs, PIGO loading from EL and converting to CSR is faster than

loading preprocessed binary files without PIGO.

We show the scalability in Figure 6.9. Up to the NUMA boundary scalability increases

with all approaches. Overall, we have shown that PIGO provides significant performance

improvements.

6.3 Summary

We tackle the long-standing belief that parallel I/O is not fruitful for loading sparse matrix

and graph files. While there may be limited parallel improvements to cold cache raw binary

reads over SATA, we show there is much to be gained with RAID controllers, NVMe SSDs,

or a warm cache. We introduce a simple to use, header-only C++ library that enables

both highly-tuned graph systems and small, one-off graph kernels to take advantage of

parallel I/O. Our library is open source and it brings over 40× end-to-end performance

improvements to state-of-the-art graph and sparse matrix systems.

132

CHAPTER 7

SCALING UP: MAINTAINING CORES IN PARALLEL

An important problem in graph analysis is finding locally dense regions in globally sparse

graphs. In this work we consider the problem of finding 𝑘-cores [228, 183], which are

maximal connected subgraphs with minimum degree at least 𝑘 . This problem has seen

significant attention due to its computational efficiency [183] and usefulness on a large

number of problems [147, 9, 109, 251, 99, 85, 144]. We address computing 𝑘-core values,

the largest 𝑘 such that a vertex is in a 𝑘-core. Cores themselves can then be efficiently

computed from the values [80].

Many practically important graphs today, from web data, social networks, and related

fields, are both large and continuously changing. Finding dense regions as quickly as possi-

ble after a change is important, for example to quickly initiate a response to rapidly spread-

ing false information about vaccines or to urgently address new pandemic super-spreading

events. We focus on maintaining 𝑘-core values over a dynamic graph with batches contain-

ing both edge insertions and deletions. The maintained 𝑘-core values can then be directly

queried. The goal of maintenance algorithms is to drive down the latency of a query, or

the algorithm runtime for processing a single edge change. This typically comes at a cost

of throughput, or the number of edge changes processed by the total runtime. A sequen-

tial, single-edge maintenance algorithm typically has both a low latency and throughput,

whereas re-computing from scratch will have both a high latency and throughput.

There are two main approaches for maintaining cores values on dynamic graphs, traver-

sal [225, 164] and order [274]. When bursts of large activity come in, they cannot keep up

with the data stream. There has been a recent focus on parallel batch algorithms to address

this problem [67, 236, 3, 59]. Such algorithms operate on a batch of edge changes at once,

enabling more parallelism at the cost of latency for small batches. They provide a middle

133

ground between computing from scratch and single-edge maintenance algorithms. There

are three known parallel batch algorithms for cores, all based on the idea of finding inde-

pendent edges and processing them with traditional, sequential techniques [258, 131, 121].

Unfortunately, this approach does not show much scalability as additional processors are

added (e.g., see Fig. 11 [131], Fig. 6 [121].) Given the increasing rate of data from social

and web applications, there is a strong need for completely new approaches that can scale

as the number of threads grow. We present two new algorithms to address this gap.

Our algorithms use the connection between ℎ-indices [116] and 𝑘-cores, first identified

by Lu et. al [174], which has been used as a local, distributed algorithm [196, 222] for com-

puting from scratch. In this algorithm, each vertex has a local value which is initialized to

inifinity. At each step (either synchronously or asynchronously), the algorithm computes

the ℎ-index of its neighbors’ values. This process will converge within the number of de-

gree levels of the graph[222]. The advantage of this process is that, after initialization, each

vertex can operate independently. Building on this, we provide two scalable maintenance

algorithms that maintain 𝑘-core values on batches of graph insertions and deletions. The

first, mod, is based on modifying local values and then “continuing” convergence. The

challenge with this approach is to increment local values as little as possible. The second,

set, follows the ℎ-index iterations, but keeps track of each edge insertion made to the graph.

The increases happen locally, based on the given set of insertions and together with con-

vergence. The mod algorithm provides consistent improvements over re-computing from

scratch for large batches, and the set algorithm provides improvements for small batches.

In many cases, real-world data is naturally modeled as hypergraphs [233]. For exam-

ple, consider purchasing relationships that consist of users and items. Hyperedges naturally

model multiple users purchasing the same item. As another example, people may be ver-

tices and hyperedges would indicate that they were close enough to each to spread diseases

during a time period. Here, a hypergraph 𝑘-core would represent a group of people that

are likely to internally spread disease. We want to ensure that our approaches both apply to

134

hypergraphs and have scalability when running on hypergraphs. For dynamic hypergraphs,

there are two main models. One model treats each hyperedge as a single, immutable unit,

and operates on a stream of hyperedge changes. This is the approach taken by [243]. How-

ever, this model cannot capture the dynamic nature of many existing hypergraphs. For

example, consider a hypergraph consisting of users and topics that the user likes. In real

networks, both new topics are created and users’ preferences change. To model this be-

havior, each hyperedge itself can also have internal changes. We address this more general

model.

We provide the following contributions.

• We provide two shared-memory parallel batch algorithms, mod and set, that main-

tain 𝑘-core decompositions using the connection between cores and ℎ-indices on

both graphs and hypergraphs

• We introduce strategies to handle parallelism in the more challenging case of chang-

ing hyperedge pins

• We demonstrate our algorithms’ scalability empirically

The remainder of this chapter is structured as follows. In § 7.1 we provide background,

including notation used, the problem we address, and related work. In § 7.2 we present the

static algorithms for 𝑘-core decompositions. In § 7.3 we introduce our parallel batch algo-

rithms. In § 7.4 we present our experiments and results, and finally in § 7.5 we conclude.

7.1 Background

7.1.1 Notation

Here we describe the notation used throughout the chapter. We are concerned with both

graphs and hypergraphs. Let 𝐺 = (𝑉, 𝐸) be a graph, where 𝑉 is a set of vertices and 𝐸 a

set of edges. We focus on simple, undirected graphs, and so each edge is a set containing

135

two distinct vertices. A hypergraph 𝐻 = (𝑉, 𝐸) is a generalization of graphs, where 𝑉 is

a set of vertices and 𝐸 is a set of hyperedges. In hypergraphs, a hyperedge is a subset of

vertices, 𝑒 ∈ 𝐸 such that 𝑒 ⊆ 𝑉 . This means that a hyperedge may contain one or more

participating vertices, compared with exactly two as in a graph. We call the relationship

between a vertex and a hyperedge a pin.

The set of neighbors of a vertex in both cases is given by Γ(𝑣) = {𝑢 ∈ 𝑉 : ∃𝑒 ∈

𝐸, {𝑢, 𝑣} ⊆ 𝑒}. The degree of a vertex is the number of neighbors it has, deg(𝑣) = |Γ(𝑣) |.

The maximum degree in a graph or hypergraph is Δ(𝐺) (Δ(𝐻), resp.). Induced subgraphs

in hypergraphs cannot split hyperedges, and so every pin in a hyperedge remains. So, when

an induced subgraph is taken (for example, in a 𝑘-core), if any vertex in a hyperedge has a

degree less than 𝑘 then the hyperedge is effectively “peeled” from the hypergraph.

7.1.2 Dynamic Hypergraphs

For hypergraphs, the stream can be either at the level of hyperedge changes or pin changes.

In either case, the notion of a 𝑘-core still requires inducing a full hyperedge, separating this

problem from that of bipartite cores [171]. While [243] addresses hypergraph streams with

hyperedge changes, we address the more general model of pin changes. It is straightfor-

ward to simulate hyperedge changes by setting batch boundaries at full hyperedges.

7.1.3 Hypergraph 𝑘-Cores to Address Pandemics

Computing hypergraph 𝑘-cores may be beneficial for identifying groups of individuals

to monitor or address for spreading of diseases, for example to assist in addressing the

COVID-19 pandemic. Consider Figure 7.1. Here, a hyperedge (a rectangle) is created be-

tween any individuals that have close contact within a time period. In the figure, person

A is in a meeting with person B and E, and so they have close contact and the first line is

a hyperedge connecting them. We call such a hypergraph a co-occurrence hypergraph. A

𝑘-core in this hypergraph could then identify individuals with significant close contact with

136

DA FEB C

Close Interactions (hyperedges)

k=3

k=1

k=3
k=2

Figure 7.1: Co-occurrence hypergraphs may be useful for identifying groups susceptible
to pandemics. Boxes are hyperedges. Dark green indicates all members have 𝜅 = 3, orange
indicates 𝜅 = 2, and blue indicates 𝜅 = 1. A graph representation gives F a high degree and
a high core value, even though it likely has low exposure. In a co-occurrence hypergraph,
F would have a core value of 1 whereas B, C, D, and E would have a value of 3, capturing
that they have close, on-going, and intimate interactions.

others, in a way that captures deeper relationships than simply looking at a graph perspec-

tive. For example, for person F, a graph representation would show them connected with

every other individual, with both a high degree and a high core value. However, they may

have been present only at one meeting, and so would be less likely to catch the disease.

The hypergraph 𝑘-core instead would place B, C, D, and E in a 3-core together, as they

are each part of 3 hyperedges where all members are in a 3 hyperedge as well.

137

Algorithm 7.1: Asynchronous local algorithm to compute 𝜅 [174].
Data: graph 𝐺 = (𝑉, 𝐸)

1 ∀𝑣 ∈ 𝑉 , 𝜏[𝑣] ← deg(𝑣)
2 repeat
3 for 𝑣 ∈ 𝑉 do in parallel
4 𝐿 ← 〈〉
5 for 𝑤 ∈ Γ[𝑣] do
6 𝐿 ← 𝐿.extend(𝜏[𝑤])
7 𝜏[𝑣] ← H-INDEX(𝐿)
8 until 𝜏 no longer changes, converging to 𝜅
9 return 𝜏

7.2 Static ℎ-index Algorithms

In this section we describe ℎ-index based approaches to compute cores, which are the

foundation of our maintenance algorithms.

Definition 7.1. Let 𝑆 = 〈𝑠1, 𝑠2, . . . , 𝑠𝑛〉 be a tuple of values, with 𝑠𝑖 ∈ Z for 𝑖 ∈ [1, 𝑛]. The

ℎ-index of 𝑆 is the largest value ℎ such that 𝑠𝑖 ≥ ℎ for 𝑖 ∈ 𝐻, where |𝐻 | = ℎ and 𝐻 ⊆ [1, 𝑛].

In this section we describe the prior foundational algorithm, highlight the challenges in

converting them to dynamic maintenance algorithms, and describe our final algorithms.

7.2.1 ℎ-index Coreness Computation

To understand our algorithms, it is first useful to understand the asynchronous local ℎ-

index algorithm proposed by [174]. This algorithm is re-presented here in Algorithm 7.1

for completeness. The local variable 𝜏 is initialized to the degree of each vertex in 𝐻. Then,

each vertex is iteratively processed and 𝜏 is updated based on the ℎ-index of neighbor’s 𝜏

values. When no further changes occur 𝜏 = 𝜅. This differs from the synchronous version

presented in Algorithm 2.2 as there is no explicit version dependency on 𝜏.

This was a breakthrough for computing 𝑘-cores as it is well suited for parallelization:

each vertex can update its own local values, given access to its neighbors’ local values, in

parallel. In the synchronous version each vertex considers its neighbor’s values from the

138

previous time step. In the asynchronous version, each vertex takes the latest available value

for each neighbor.

7.2.2 Key Problem: How To Reinitialize

Consider Algorithm 7.1. There are many different possible initializations for 𝜏. In fact,

𝜏 can be initialized to any value equal to or larger than 𝜅—the degree is chosen simply

because it is an upper bound on 𝜅. It would be possible to use ∞, or 𝜅 [𝑣] + 1, as shown

by the convergence of the asynchronous version [174]. If 𝜏 is initialized to ∞, then after

only one iteration 𝜏 will recover the degree initialization. The constraint is that 𝜏 cannot

be initialized too low, that is, if some vertex 𝑑, 𝜏[𝑑] is initialized below 𝜅 [𝑑], 𝜏 may fail to

convergence to 𝜅.

It may seem like simply re-using the prior output, incrementing the edge that changed,

and continuing the computation will work. Unfortunately, this is not the case.

Lemma 7.1. If a 𝜏 value is below 𝜅, then Algorithm 7.1 may never converge to 𝜅.

Proof. Consider 𝑃𝑛, a path of length 𝑛. Note that ∀𝑣 ∈ 𝑃𝑛, 𝜅 [𝑣] = 1. Let the endpoints be

𝑣1 and 𝑣𝑛, such that deg(𝑣1) = deg(𝑣𝑛) = 1. Suppose {𝑣1, 𝑣𝑛} is an inserted edge. Then,

suppose that any two consecutive vertices 𝑣 𝑗 , 𝑣𝑘 have 𝜏[𝑣 𝑗] = 𝜏[𝑣𝑘] = 1. Now, running

Algorithm 7.1 to convergence will result in 𝜅 [𝑣𝑖] = 1∀𝑖 ∈ [1, 𝑛], which is incorrect. �

As tempting as it is, given Lemma 7.1 a simple memoization algorithm will not work.

Furthermore, if only part of the hypergraph is initialized above 𝜅, then the vertices

already at 𝜅 do not need to re-compute each iteration allowing the problem to remain local

to part of the graph.

The key problem is that we need to know the smallest set to increment, and increment

those vertices, before we can run to convergence.

Building on this observation we present two dynamic algorithms along with several

variants. In the first algorithm, we initialize 𝜏 values once for each batch, trying to increase

139

Algorithm 7.2: hhcLocal, extending [174] to hypergraphs.
Data: hypergraph 𝐻 = (𝑉, 𝐸)
Input: optional 𝜏 initialization, frontier 𝐴

1 if 𝜏 is not given then ∀𝑣 ∈ 𝑉 , 𝜏[𝑣] ← deg(𝑣)
2 if 𝐴 is not given then 𝐴← 𝑉

3 repeat
4 for 𝑣 ∈ 𝐴 do in parallel
5 𝐴′← ∅
6 𝐿 ← 〈〉
7 for 𝑒 ∈ 𝐸 : 𝑣 ∈ 𝑒 do

8 𝐿 ← 𝐿.extend
(

min
𝑤∈𝑒,𝑤≠𝑣

𝜏[𝑤]
)

9 𝜏[𝑣] ← H-INDEX(𝐿)
10 if 𝜏[𝑣] changed then 𝐴′← 𝐴′ ∪ {𝑣} ∪ Γ(𝑣)
11 𝐴← 𝐴′

12 until 𝐴 = ∅
13 return 𝜏

𝜏 as little as possible while ensuring convergence. We keep track of which vertices in 𝐻 are

already at convergence and do not perform any computation on them, allowing for batches

to run in 𝑜(|𝐻 |). In the second, we combine initialization and convergence, allowing for

initialization to spread concurrently with convergence. We keep track of changes to 𝐻 and

propagate them through the graph, increasing 𝜏 values for neighbors that have not seen the

change yet and would be affected by it.

7.2.3 Extension To Hypergraphs

We extend Algorithm 7.1 to hypergraphs. Our extension is shown in Algorithm 7.2. In

particular, we build the neighbor list 𝐿 using the minimum value after excluding the source

vertex. This allows for coreness values to remain correct, as any vertex with too low of a

coreness value will cause the entire hyperedge to stop contributing.

Theorem 7.1. Algorithm 7.2 will correctly return the coreness values 𝜅.

Proof. This proof follows Thm. 1 [174], using induction to bound the ℎ-index sequence

from above and below, resulting in exactly the coreness. �

140

Given the similarity between 𝑘-cores on graphs and hypergraphs, for the remainder of

this chapter we stay in the hypergraph setting. The special case, when each hyperedge has

exactly two endpoints, applies in all of the results and is easy to handle as a special case for

an implementation.

7.3 ℎ-Index Based Core Maintenance

We now present two dynamic algorithms, both of which build on the local ℎ-index algo-

rithm presented in [174]: the first involves incrementing 𝜏 across the graph, attempting

to increment as few times as possible. Convergence then occurs similarly to in Algo-

rithm 7.1. The second involves combining initialization and convergence. We keep track

of each change to 𝐻 and run a modification of the ℎ-index algorithm. As the 𝜏 computa-

tion iterates, updates are propagated outwards, causing vertices to increment their own 𝜏

as appropriate. We refer to this algorithm as set, with setmb additionally optimized with

mini-batches.

These two algorithms come with different tradeoffs. The re-initialization is useful to

provide consistent latencies lower than a static recomputation, but on many graphs fails

to capture really low latencies. The combined initialization and convergence provides a

different advantage: it can have significant latency improvements, reaching over 104× static

computation on real-world graph instances, but with high variability: with some batches

there are far more iterations as increments propagate, and there is a computational overhead

for checking whether an update has been processed.

Our algorithms are presented with callback functions, which are designed to be run

when an vertex is inserted into or removed from a hyperedge. The change value 𝑐 is the

direction, indicating either an insertion (+) or deletion (−).

141

Algorithm 7.3: A simple variant of mod that operates only on a single hyperedge
change and maintains 𝜅. hhcLocal extends Algorithm 7.2 with active vertices
that, on a local change, make neighbors active and otherwise go dormant.

Data: hypergraph 𝐻 = (𝑉, 𝐸), local values 𝜏
Input: single hyperedge change 𝑦 = {𝑑1, . . . , 𝑑𝑠}, 𝑐
⊲ update the hypergraph

1 for 𝑑𝑖 ∈ 𝑦 do
2 if 𝑐 = + then 𝐻 [𝑦, 𝑑𝑖] ← 1
3 else 𝐻 [𝑦, 𝑑𝑖] ← 0
⊲ maps are zero-initialized

4 𝑅 ← {} ⊲ map 𝜏 values to num. resolved ins.
5 𝐷 ← {} ⊲ map 𝜏 values to num. of deletions
⊲ find a vertex with min 𝜏 value

6 𝑑𝑚 ← arg min𝑑𝑖∈𝑦 𝜏[𝑑𝑖]
7 if 𝑐 = + then 𝑅[𝜏[𝑑𝑚]] ← 1
8 else 𝐷 [𝜏[𝑑𝑚]] ← 1
9 𝐴← ∅ ⊲ active vertices to process

10 for 𝑑 ∈ 𝑉 do in parallel
⊲ apply the resolved count

11 𝜏[𝑑] ← 𝜏[𝑑] + 𝑅[𝜏[𝑑]]
⊲ mark changed vertices as active

12 if 𝑅[𝜏[𝑑]] ≥ 0 or 𝐷 [𝜏[𝑑]] > 0 then
13 𝐴← 𝐴 ∪ {𝑑}
14 hhcLocal(𝐴, 𝜏), using vertices 𝐴 and initialized to 𝜏

142

7.3.1 Re-initialization Based Algorithms

In this section we describe our algorithms that are based on initializing 𝜏 and then running

Algorithm 7.2, which result in fewer iterations than static computation in many instances.

This problem was shown to be unbounded in the locally persistent model [273], and so we

cannot expect to do better than re-running from scratch in all cases. This result also means

that we need to ensure our worst-case complexity matches computing from scratch, but we

cannot expect to have a better complexity.

Differing significantly from state-of-the-art core and truss maintenance algorithms [273,

274], we do not maintain an order of the vertices. Instead, we make larger increments than

necessary and let the parallel local ℎ-index approach resolve them.

We begin by introducing a simple, non-batch variant of our algorithm, presented in

Algorithm 7.3. Our batch approach naturally extends from there to the full mod algorithm,

and is shown in Algorithm 7.4.

We know that for a single edge insertion in 𝐻, the 𝜅 value will only change for the

involved minimum 𝜅 valued vertex (by [225]). However, we will be performing multiple

updates in a batch. This means that the 𝜏 values are, at this point in time, potentially smaller

than 𝜅. So, we cannot identify which vertex has the minimum 𝜅 and instead increment all

𝜅 values that participate in the modified hyperedge. In lines 9-16 we deal with the situation

where the subcore, or part of it, has moved after some other insertion or deletion. We

conservatively increment in as many potential parallel cases as possible, such as when the

subcore is broken, part of it merged with smaller subcores, and more.

It is possible to limit checking each vertex in line 18 by using reverse maps, however in

practice, the overhead of this reverse map offsets potential gains.

If a 𝜅 value changes for a vertex, two properties must hold: that vertex must have

a specific starting 𝜅 value and they must be connected to the hyperedge change (again

by [225]). The mod algorithm exclusively uses the 𝜅 value and ignores the connectivity.

Additionally, we perform an important optimization: the minimum values on hyper-

143

Algorithm 7.4: The mod algorithm.
Data: hypergraph 𝐻 = (𝑉, 𝐸), local values 𝜏
⊲ Insertion callback

1 Function f-mod(𝑒𝑎, 𝑣𝑏, 𝑐):
2 if ∃𝑣𝑖 ∈ 𝑒𝑎 s.t. 𝜏[𝑣𝑏] > 𝜏[𝑣𝑖] then return
3 if 𝑐 = + then 𝐼 [𝜏[𝑣𝑏]] ← 𝐼 [𝜏[𝑣𝑏]] + 1
4 else 𝐷 [𝜏[𝑣𝑏]] ← 𝐷 [𝜏[𝑣𝑏]] + 1

Input: batch edge set 𝐵
5 𝐼 ← {} ⊲ map 𝜏 values to num. of insertions
6 𝐷 ← {} ⊲ map 𝜏 values to num. of deletions
7 𝑅 ← {} ⊲ map 𝜏 values to num. resolved ins.
8 MaintainH(f-mod, 𝐵)
⊲ increment as many possible subcore levels and values that could arise from concurrent

execution
9 for 𝑘 ∈ keys(𝐼) do in parallel

⊲ increment as if some subcore at 𝜅 = 𝑘 decreased and merged with another
10 for 𝑡 = 𝑘 − 𝐷 [𝑘] to 𝑘 − 1 do
11 𝑅[𝑡] ← 𝑅[𝑡] + 𝐼 [𝑘]
12 𝑅[𝑘] ← 𝑅[𝑘] + 𝐼 [𝑡]
13 𝑅[𝑘] ← 𝐼 [𝑘] ⊲ increment if stayed at level

⊲ increment as if some subcore at 𝜅 = 𝑘 increased and merged with another
14 for 𝑡 = 𝑘 + 1 to 𝑘 + 𝐼 [𝑘] do
15 𝑅[𝑡] ← 𝑅[𝑡] + 𝑘 + 𝐼 [𝑘] − 𝑡
16 𝑅[𝑘] ← 𝑅[𝑘] + 𝐼 [𝑡]
17 𝐴← ∅ ⊲ active vertices to process
18 for 𝑑 ∈ 𝑉 do in parallel

⊲ apply the resolved counts
19 𝜏[𝑑] ← 𝜏[𝑑] + 𝑅[𝜏[𝑑]]

⊲ mark changed vertices as active
20 if 𝑅[𝜏[𝑑]] ≥ 0 or 𝐷 [𝜏[𝑑]] > 0 then
21 𝐴← 𝐴 ∪ {𝑑}
22 hhcLocal(𝐴, 𝜏), using vertices 𝐴 and initialized to 𝜏

144

edges are cached. It is possible to only store a single minimum, as this will not have a

negative impact on the convergence or correctness.

7.3.2 Processing in Parallel with Pin Changes

The problem becomes more complicated for re-initialization algorithms as we deal with a

stream of pin changes instead of hyperedge changes. For each pin deletion, this can result

in both an increase and a decrease in 𝜅 values for different nodes. The hyperedge that loses

the pin may in fact gain a new 𝜅 value for all other vertices. This will happen if the pin

is exactly the lowest valued vertex in the hyperedge. Additionally, the vertex that the pin

connects to may drop its 𝑘-core value.

Similarly, with an insertion, this can result in both an increase in the core value for the

vertex with the pin and a decrease in the core value for every other vertex in the hyperedge.

This complicates the decision for resolving increments, and increases the number of

increments and decrements that have to happen. This results in significantly more book-

keeping for the process in lines 9-16. The full, parallel process in the implemented system

can be seen in Figure 7.2. Here, given a change to the hypergraph, we need to keep track

of whether the change can be processed immediately or needs to be resolved later. This

process will iterate until all changes have been resolved. The need for this work can be

seen in Figure 7.3.

Concretely, we break the problem down into four cases. Here, we present the cases

dealing with deletions. For insertions, the deletions and insertion changes are swapped.

• Case 1: the hyperedge no longer exists. Find the minimum range within the previous

hyperedge vertices’ ranges and decrement this range.

• Case 2: the minimum range of the deleted pins can be smaller than the existing min-

imum range. Here, decrement everything within the minimum range of the deleted

pins, and increment everything within the minimum range of the existing hyperedge.

145

Add Change to
Hypergraph

If "safe", process
immediately

If "unknown",
save to a parallel

list

Parallel hash
map of <tau
values, inc>

Resolve
increments in

possible ranges

Find any that can
be processed

Updates finished

Figure 7.2: The process of performing increments based on a hyperedge change. Safe
means the change can be concretely resolved, that is the possible positions of the pin in the
hyperedge range is known.

• Case 3: no deleted pins had vertices within the minimum range. This is marked

unknown, and needs to be revisited in the next loop if anything else can change.

• Case 4: the deleted pins minimum range may overlap the existing minimum range.

Decrement everything in the middle range.

Note that everywhere we use ranges instead of concrete 𝜅 values, as they will be pro-

cessed in a loop until convergence. During the processing, we make sure not to re-do work.

Even though ranges will grow during iterations, the new increments and decrements, and

changed cases, should not re-increment prior values.

7.3.3 Mixing Initialization and Convergence

In this section we describe our set algorithm, which mixes initialization of 𝜏 and conver-

gence concurrently. This algorithm deviates internally from Algorithm 7.2. Each hyper-

edge change is recorded and its history is remembered for the course of the batch. During

each ℎ-index computation, the neighbors of a vertex are considered but instead of reading 𝜏

146

Algorithm 7.5: The set algorithm, which mixes incrementing 𝜏 and converging
𝜏. The id function resets each batch and increments on distinct 𝑒𝑎 inputs.

Data: hypergraph 𝐻 = (𝑉, 𝐸), local values 𝜏
⊲ Insertion callback

1 Function f-set(𝑒𝑎, 𝑣𝑏, 𝑐):
2 𝐴[𝑣𝑏] ← 2 ⊲ maximum time-to-live
3 if 𝑐 = + then𝑈 [𝑣𝑏] ← 𝑈 [𝑣𝑏] ∪ {id(𝑒𝑎)}

Input: batch edge set 𝐵
4 𝐴,𝑈, 𝑃← {}, {}, {}
5 MaintainH(f-set, 𝐵)
6 repeat
7 𝑐 ← false
8 for 𝑥 ∈ 𝑉 do in parallel
9 if 𝐴[𝑥] = 0 then continue

10 𝑈𝑥 ← 𝑈 [𝑥] ⊲ 𝑈 [𝑥] may change
11 𝐿 ← ∅ ⊲ list of neighbor values
12 for 𝑒 ∈ 𝐸 : 𝑥 ∈ 𝑒 do
13 𝑚 ←∞
14 for 𝑛 ∈ 𝑒 : 𝑛 ≠ 𝑥 do

⊲ Consider un- or processed hypergraph changes for 𝑛
15 𝑡 ← 𝜏[𝑛] + |𝑈 [𝑛] ∪ (𝑈𝑥 \ 𝑃[𝑛]) |
16 if 𝑡 < 𝑚 then 𝑚 ← 𝑡

17 𝐿 ← 𝐿 ∪ 𝑚
18 𝜏′← H-INDEX(𝐿)

⊲ Determine if our 𝜏 changed
19 if 𝜏′ ≠ 𝜏[𝑥] then

⊲ Update the neighbors
20 for 𝑛 ∈ 𝑒 such that 𝑥 ∈ 𝑒 and 𝑛 ≠ 𝑥 do
21 𝑈 [𝑛] ← 𝑈 [𝑛] ∪ (𝑈𝑥 \ 𝑃[𝑛])
22 𝐴[𝑛] ← 2
23 𝜏[𝑥] ← 𝜏′

24 𝐴[𝑥] ← 2
25 else
26 𝐴[𝑥] ← 𝐴[𝑥] − 1
27 𝑃[𝑥] ← 𝑃[𝑥] ∪𝑈𝑥
28 𝑈 [𝑥] ← 𝑈 [𝑥] \𝑈𝑥
29 𝑐 ← true
30 until 𝑐 = false

147

2

2

2

2

2

1
2

0

0

0

Figure 7.3: A notional example showing why increments need to be sufficiently high. The
dotted lines are new edges and the solid lines are existing edges. Even though edges are
only added to the 𝜅 = 1 vertex, after the batch is processed all vertices need to increase to
𝜅 = 3.

directly, 𝜏 is read and each potential graph change is applied. If this will result in a change

to that vertex, then the change is propagated. Otherwise, the change stops.

This allows for a small part of the graph to be visited, but in the worst case will re-

sult in additional iterations and additional work, as each change may slowly propagate to

the whole graph before regular 𝜏 convergence, increasing the number of iterations by the

diameter of the graph. We present this approach in Algorithm 7.5. In the callback, each

vertex is marked as having the modification “unprocessed.” Then, lines 10-28 contain the

mixed convergence with increments. First each neighbor is considered. Instead of setting

the new 𝜏 value based on the ℎ-index of the neighbor’s 𝜏 values, it sets 𝜏 based on the

ℎ-index the neighbor’s currently unprocessed modifications, plus the modifications neither

the vertex nor the neighbor has processed. Differing from the re-initialization algorithms,

vertices stay active for one extra iteration after convergence. This allows for convergence

to occur when 𝑈 [𝑥] is updated while 𝑥 is currently processing and covers cases where an

update propagation changes from incrementing to iteratively converging.

While the updates are propagating the memory may continue to grow across the hy-

pergraph, as more 𝑈 and 𝑃 entries are being set. There are a variety of ways to realize

this in implementation, some of which come with more expensive memory requirements.

We considered using boolean vectors, dynamic bit vectors, and fixed-size pre-allocated bit

148

vectors coupled with mini-batches. Our experiments are all performed with mini-batches

(setmb), with batch sizes of 64. Mini-batches stopped iterating when 𝑃 became empty for

all vertices with a final batch iteration to converge 𝜏.

The correctness of this algorithm comes from the observation that if the frontier of an

update will not cause any further increase in 𝜏 values, then it is not necessary to further

propagate the update.

7.4 Experiments and Results

In this section we perform experiments to empirically demonstrate the scalability of our

two algorithms, mod and setmb, as graphs become bursty.

We implemented our algorithms in C++17 and compiled with GCC 10.2.0 and -O3.

We use Intel TBB to provide parallel hash maps to store the graph (with the edge lists

stored as vectors) and both TBB and OpenMP to parallelize execution. We ran on Intel

Xeon E5-2683 v4 CPUs with 512 GB RAM and dual sockets. We use numactl to control

the number of threads. The correctness of graph and hypergraph results were checked by

comparing with Ligra [233].

Unfortunately we were not able to compare against existing alternative parallel imple-

mentations, as they are not publicly available [258, 131, 121]. We note that against the

reported runtimes, we are around 4× faster, however we are using different hardware and

systems. We stress that none of the prior systems have reported scalability as cores are

added.

7.4.1 Datasets

We choose a variety of graphs from domains representing social networks, citation net-

works, and web data. The graphs are shown in Table 7.1 and the hypergraphs are shown in

Table 7.2. The graph datasets were download from SNAP [160] and the hypergraphs from

KONECT [151]. As these graphs are not ordered temporally and do not have deletions, we

149

Table 7.1: Graphs used for our experiments.

Name Vertices Edges

OrkutLinks 3.07 M 240 M
LiveJ 3.99 M 37.4 M
Pokec 1.63 M 22.3 M
Patents 3.77 M 16.5 M
DBLP 1.82 M 8.34 M
WikiTalk 2.39 M 4.66 M
Google 0.88 M 4.32 M
YouTube 3.22 M 9.38 M

Table 7.2: Hypergraphs used for our experiments.

Name Vertices Hyperedges Pins

OrkutGroup 2.8 M 8.7 M 327 M
WebTrackers 27 M 13 M 141 M
LiveJGroup 3.2 M 7.5 M 11.M

simulated edge insertions and deletions as follows. First, we select the batch size number

of edges and remove them from the graph. In the hypergraph case, we selected the number

of pin changes. We then insert them back again, and time both the removal and insert. To

test mixed insertion and removal times, we set our removal and insert size to be 3/2 the full

batch size. Then, for every removal and insert test, we have one batch with only removals,

one mixed batch, and one batch with only insertions.

In each experiment, the batches were removed and then re-inserted 50 times. The error

bars in all of the plots show one standard deviation from the mean. We choose batch sizes

based on expected real-world ranges for each algorithm. We do not show the results for

setmb for hypergraphs, as it will require caching values on hyperedges to be competitive

against mod.

7.4.2 Insertion Scalability

First, we measure the scalability for handling insertions for both mod and setmb. The

results can be seen in Figure 7.4–7.5. In both cases, as the cores increase the total run-

150

100 edges 10k edges 1m edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Figure 7.4: The mod algorithm’s scalability for processing edge insertions at different
batch sizes. Insertion-only edge batches with mod.

time decreases. The total runtime for small batches with mod is only slightly less than

large batches, showing that as the batch size increases the algorithm similarly scales well.

Choosing to run setmb for very small batches and mod for larger batches would be ef-

fective for a wide range of insertions. Additionally, setmb has a very high variance on

the larger graphs. While it provides the smallest runtimes on small batches, it also has

high outliers that significantly increase the average. Future work can address reducing the

variance and the maximum cost.

For some graphs, moving from 16 to 32 threads comes with a slight decrease in perfor-

mance.

In Figure 7.6 we show the scalability for running mod on the hypergraphs. For Web-

Trackers, the performance decreases in all cases after 8 threads, however for OrkutGroup

and LiveJGroup the performance continues to decrease after the NUMA boundary. With

up to 8 threads on those graphs the scalability is close to linear.

151

1 edge 10 edges 100 edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Figure 7.5: Insertion-only edge batches with setmb.

10 pins 100 pins 10k pins

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e
c
)

OrkutGroup WebTrackers LiveJGroup

Figure 7.6: Insertion-only pin batches with mod.

152

100 edges 10k edges 1m edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

0

1

4

16

64

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Figure 7.7: Deletion-only edge batches with mod.

1 edge 10 edges 100 edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

2
−12

2
−10

2
−8

2
−6

2
−4

2
−2

2
0

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Figure 7.8: Deletion-only edge batches with setmb.

153

10 pins 100 pins 10k pins

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

2
−4

2
−2

2
0

2
2

2
4

2
6

Threads

T
im

e
 (

s
e
c
)

OrkutGroup WebTrackers LiveJGroup

Figure 7.9: Deletion-only pin batches with mod.

100 edges 10k edges 1m edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Figure 7.10: Mixed batches with mod.

154

7.4.3 Deletion Scalability

We measure the scalability for performing just edge deletions with both mod and setmb.

The results can be seen in Figures 7.7–7.9. For both mod and setmb, the performance

tends to decrease as the batch sizes get larger and increase as the number of threads in-

creasing, showing that this approach similarly scales on deletions. For setmb, even with

large batches the latency for deletions is low.

When deleting pins in hypergraphs, the variance can become large. For example, see

OrkutGroup with 10k pins. Both the insertion and deletion variance for a small number of

pin changes is high.

7.4.4 Mixed Insertions and Deletions

One advantage of these algorithms is that they do not require pre-processing on the stream

to separate batches into deletions and insertions. Instead, insertions and deletions can be

handled concurrently. Our results show similar scalability for mixed batches as with inser-

tions. For example, in Figure 7.10 we show the mixed batches for mod. Note the similarity

to Figure 7.4.

7.5 Summary

In this chapter, we presented two scalable, parallel batch 𝑘-core maintenance algorithms

that operate on fully dynamic graph and hypergraph streams. These algorithms differ from

prior approaches in that they build on the connection between ℎ-indices and 𝑘-cores. We

address two models for dynamic hypergraphs, one with hyperedge changes and one with

pin changes. Our implementations empirically scale well on shared-memory systems, ex-

ceeding the scaling performance of prior algorithms.

Future work includes combining the two approaches into a hybrid approach that can

provide both low latencies for small batches but addresses high variance, introducing ap-

155

proximate results during very high batch rates, and implementing these algorithms in dis-

tributed systems to further explore scalability.

156

CHAPTER 8

DISTRIBUTED FAST ℎ-INDEX COMPUTATION

Computing ℎ-indices on large lists is an increasingly important kernel. Prior sequential

algorithms, which are based on bucket sorting, suffer from large communication costs when

directly parallelized. Building on fast selection algorithms, in this chapter we introduce

DHIndex, a new parallel algorithm that uses divide-and-conquer with a pivot to compute

the ℎ-index. Using the median as a pivot, DHIndex has a computation complexity of

𝑂 (𝑛/𝑝) and a communication complexity of 𝑂 (log 𝑝 log 𝑛), improving on the 𝑂 (𝑛/𝑝 +

log 𝑝) communication cost from a direct parallelization of sequential algorithms, where 𝑛

is the size of the list and 𝑝 the number of processors. Similar to selection algorithms, the

pivot can be chosen randomly to achieve the same complexities in expected time. Using a

random pivot, DHIndex computes ℎ-indices on over 3 trillion integers across 6784 cores

in under 10 seconds. Even sequentially, DHIndex provides a speedup over prior state-of-

the-art approaches on large inputs.

This is a crucial kernel for implementing core and nuclei computation and maintenance

as we scale out, as it is the main computational problem for all ℎ-index based approaches.

8.1 Introduction

The ℎ-index [116] was proposed as a way to evaluate the influence of a researcher based

on their publication record, defined as the largest number ℎ of papers with at least ℎ ci-

tations per paper. This index has become widely used for evaluating researchers, institu-

tions, and journals [7], and has had many extensions and derivatives [35]. Beyond biblio-

metrics, the ℎ-index is used to rank entities in domains such as Internet media [120] and

sports [22]. Furthermore, the ℎ-index, when iteratively applied, results in the degeneracy

of a graph [174], meaning 𝑘-cores can be computed and even maintained in parallel using

157

0

25

50

75

100

YouT
ube Goog

le
Berk

Stan Paten
ts Poke

c
soc−

LiveJ Orku
t

P
er
ce
n
t

other

small

large

Figure 8.1: Time spent computing ℎ-indices for large and small vertices and other compu-
tation for a 𝑘-core decomposition. A large vertex has a degree of at least 5 million, after
which running DHIndex on a single thread is faster than prior approaches.

ℎ-index computations [196, 222, 91]. Yet other promising uses for ℎ-indices are emerg-

ing [70], including solving minimum problems in 𝐿2 [0, 𝑇] [69] and geometric relations

with Lorenz curves [68].

In this chapter, we address a largely unstudied yet increasingly pressing problem: how

can we can compute the ℎ-index quickly on large lists, with millions or more elements?

When only considering author bibliometrics, problems at this scale are rare. However, as

the ℎ-index becomes a key kernel in other domains, such as 𝑘-cores and non-bibliometric

indices, input datasets contain millions or billions of elements. Prior sequential algorithms

are fast and take only two or three linear passes over the input. However, to the best of our

knowledge, no prior parallel approach has been proposed. While the ℎ-index problem is re-

lated to selection (finding the 𝑘-th smallest element in a list), fast selection algorithms [30]

do not directly apply. We develop a new algorithm, DHIndex, that computes the ℎ-index of

a list work-efficiently in parallel. On shared-memory systems DHIndex provides speedups

on large lists and on distributed-memory systems DHIndex enables previously out-of-reach

data sizes.

We are motivated in particular by computing 𝑘-cores. Figure 8.1 shows the time spent

computing 𝑘-cores by [222] in parallel on a variety of SNAP graphs [160]. Large vertices

are defined as those with a degree of at least 5 million. We measure the time spent comput-

ing ℎ-indices on neighbor lists for large vertices, small vertices, and any other computation

158

computation for ℎ-indices. On average, over 75% of the time is spent on large vertices. A

parallel ℎ-index algorithm could enable improved load balancing and reduce the large ver-

tex computation time. Additionally, in vertex-centric distributed models, parallel ℎ-index

computation is necessary when vertex neighbor lists are spread over multiple machines.

DHIndex is a recursive algorithm and works in a similar way to fast selection algo-

rithms [30]. It takes multiple linear passes over the input, which can be done independently

and in parallel. Each pass chooses a pivot element and then counts elements below, at, and

above the pivot. The counts are reduced and used to determine if the ℎ-index is the pivot,

above it, or below it. If above or below, the input is filtered and DHIndex is recursively

called.

8.2 Background and Prior Approaches

Let 𝑆 = {𝑠1, . . . , 𝑠𝑛} ∈ N be a multiset of integers. The ℎ-index is the largest index 𝑖 such

that |{𝑠 ∈ 𝑆 : 𝑠 ≥ 𝑖}| ≥ 𝑖.

8.2.1 Bucket-Based Computation

An intuitive and natural way to compute the ℎ-index is by sorting the list and then iterat-

ing through it in reverse, stopping when the position iterated through exceeds the value.

Implemented directly, this would lead to 𝑂 (𝑛 log 𝑛) runtime. An important observation is

that the ℎ-index cannot be larger than 𝑛, and so values above 𝑛 can be replaced by 𝑛. By

adjusting the sorting method to use a bucket sort with 𝑛 elements, the ℎ-index can be com-

puted in two or three linear passes, depending on whether the maximum is computed. This

approach is shown in Algorithm 8.1.

Correctness After line 4, 𝐴 contains the counts of elements. 𝑡 counts the number of

elements visited, and the algorithm terminates on 𝑖 if 𝑡 ≥ 𝑖. Following elements will be < 𝑖,

and so 𝑖 is the ℎ-index.

159

Algorithm 8.1: Bucket-based fast ℎ-index computation
Input: 𝑆

1 𝑀 ← min{max{𝑠 ∈ 𝑆}, 𝑛}; 𝐴[𝑀] ← [0, . . . , 0]; 𝑡 ← 0
2 for 𝑠 ∈ 𝑆 do
3 𝑣 ← min{𝑠, 𝑀}
4 𝐴[𝑣] ← 𝐴[𝑣] + 1
5 for 𝑖 ∈ {𝑀, . . . , 1} do
6 𝑡 ← 𝑡 + 𝐴[𝑖]
7 if 𝑡 ≥ 𝑖 then return 𝑖
8 return 0

Complexity 𝑀 can be at most 𝑛, bounding the for loops and max. As such, the runtime

and space requirements are both 𝑂 (𝑛).

Parallelization With large datasets, parallelization becomes important. We consider a

natural extension of this algorithm to the parallel case. 𝑀 is computed with a reduction.

The array 𝐴 is distributed across the ranks and an all-to-all communication moves counts

to the corresponding location in 𝐴. Then, the final for loop is computed with a prefix

sum. This results in 𝑂 (𝑛/𝑝) computation complexity and 𝑂 (𝑛/𝑝 + log 𝑝) communication

complexity.

8.3 DHIndex

We first introduce a sequential algorithm, running in𝑂 (𝑛), and then describe its paralleliza-

tion and resulting complexities.

8.3.1 Overview

This algorithm is recursive and reduces the amount of data processed by a constant factor

in each recursion step. First, a pivot is selected. Then, each element in the list is compared

against the pivot and the number of elements larger, smaller, or identical to the pivot are

counted. Based on these counts, it is possible to determine whether the ℎ-index is higher,

lower, or equal to the pivot element. The algorithm then appropriately recurses on the

160

reduced multiset.

Lemma 8.1. Let 𝑆 be a multiset of integers and 𝑝 ∈ 𝑆 a pivot element. Denote 𝑛 = |𝑆 |,

𝑎 = |{𝑠 ∈ 𝑆 : 𝑠 > 𝑝}|, 𝑏 = |{𝑠 ∈ 𝑆 : 𝑠 < 𝑝}|, and 𝑒 = |{𝑠 ∈ 𝑆 : 𝑠 = 𝑝}|. Let the ℎ-index of

𝑆 be ℎ. Then,

• If 𝑎 > 𝑝, then ℎ > 𝑝

• If 𝑎 + 𝑒 < 𝑝, then ℎ < 𝑝

• Else, ℎ = 𝑝

Proof. Suppose 𝑎 > 𝑝. There are at least 𝑝 + 1 elements valued at least 𝑝 + 1, and so 𝑝 + 1

is a lower bound on ℎ. Hence, ℎ > 𝑝.

Suppose 𝑎 + 𝑒 < 𝑝. By definition, 𝑝 is not an ℎ-index itself and is an upper bound.

Hence, ℎ < 𝑝.

Suppose otherwise 𝑎 ≤ 𝑝 and 𝑎 + 𝑒 ≥ 𝑝. We know that there are at least 𝑝 elements

greater than or equal to 𝑝, and so 𝑝 can be an ℎ-index if it is the largest integer 𝑝. Suppose

there was a larger integer, 𝑝 + 1. This is not an ℎ-index, by assumption, as there are at most

𝑝 integers valued 𝑝 + 1 or higher. Hence, 𝑝 = ℎ. �

Using Lemma 8.1, we can move up or down. The final point of the algorithm covers

how movement up or down occurs. When moving up, any values 𝑠 ≤ 𝑝 are simply dis-

carded. When moving down, all values 𝑠 ≥ 𝑝 are effectively replaced with a ∞ value,

preserving only the count.

Observation 8.1. Let 𝑖 be the ℎ-index of 𝑆. Then ∀𝑏 ∈ 𝑆 with 𝑏 < 𝑖, the ℎ-index of 𝑆 \ {𝑏}

is again 𝑖 and ∀𝑎 ∈ 𝑆 with 𝑎 ≥ 𝑖, the ℎ-index of 𝑆 \ {𝑎} ∪ {∞} is again 𝑖.

Observation 8.1 means that when recursing upwards anything at or below the pivot

can be deleted and when recursing downwards all values at or above the pivot can be

replaced with a single overflow counter, representing ∞. The full algorithm is shown in

Algorithm 8.2.

161

Algorithm 8.2: DHIndex, a recursive approach.
Input: 𝑆, 𝑜

1 if |𝑆 | = 0 then return 𝑜
2 𝑝 ← Pivot(𝑆)
3 𝑎 ← |{𝑠 ∈ 𝑆 : 𝑠 > 𝑝}| + 𝑜
4 𝑒 ← |{𝑠 ∈ 𝑆 : 𝑠 = 𝑝}|
5 𝑏 ← |{𝑠 ∈ 𝑆 : 𝑠 < 𝑝}|
6 if 𝑎 > 𝑝 then
7 return DHIndex({𝑠 ∈ 𝑆 : 𝑠 > 𝑝}, 𝑜)
8 else if 𝑎 + 𝑒 < 𝑝 then
9 return DHIndex({𝑠 ∈ 𝑆 : 𝑠 < 𝑝}, 𝑎 + 𝑒)

10 else return 𝑝

Correctness Observation 8.1 ensures that the filtering in lines 7 and 9 do not modify the

resulting ℎ-index on recursion. Lemma 8.1 ensures that the recursion is correct. It then

remains to show that any termination of the algorithm will be correct for the given input. If

the algorithm then terminates on line 10, then Lemma 8.1 ensures correctness. Otherwise,

the algorithm can terminate on line 1. Then, 𝑆 contains exactly 𝑜 infinity values, which has

an ℎ-index of 𝑜.

8.3.2 Choosing a Pivot

The choice of a pivot is crucial for Algorithm 8.2. If the pivot only removes a single element

per recursion, the algorithm will run in 𝑂 (𝑛2) time. The pivot computation itself has to be

fast—linear time or better. A natural pivot is to use the median. This can be computed in

𝑂 (𝑛) time [30] and results in DHIndex running in linear time.

Lemma 8.2. Algorithm 8.2 runs in 𝑂 (𝑛) using the median as a pivot.

Proof. We need to show that the amount of work reduced at each step is a constant ratio of

the input size.

While either recursing down or up, the median value itself is removed along with either

all of the values above or below. By definition of the median, this means |𝑆 | /2 values will

be removed. There is𝑂 (𝑛) work per recursion, namely first by determining the median and

162

second by counting high, low, or equal. Hence, we have the recurrence 𝑇 (𝑛) = 1 ·𝑇 (𝑛/2) +

𝑂 (𝑛), resulting in an overall runtime of 𝑂 (𝑛) [25]. �

The disadvantage of choosing a median is that the computation itself is involved and,

while linear time, takes multiple parallel independent passes over the data. Similar to fast

selection approaches [210], we implement a simpler pivot selection by simply picking an

element uniformly at random.

Lemma 8.3. Algorithm 8.2 runs in 𝑂 (𝑛) expected time using a random element as a pivot.

Proof. Let a good pivot be one that results in a constant fraction of the input being filtered

out. Then, by [25] we achieve a running time of 𝑂 (𝑛). Consider the middle 3/4 of the

input values, above the 1/8-th smallest and below the 7/8-largest. Any value in the range

is a good pivot. Since the length of the range is 3/4, then a randomly sampled value will

be a good pivot with a probability 3/4. As such, the expected runtime is 𝑂 (𝑛). �

8.3.3 Parallelizing DHIndex

Given a parallel pivot selection, it is possible to parallelize DHIndex. Assume that 𝑆 is

evenly distributed among the ranks. First, a reduction computes |𝑆 |, to determine whether

to return 𝑜 early. Next, a parallel fast pivot computation determines 𝑝. We use a random

pivot and boost the probability by taking multiple samples per processor and finding the

median of those samples. Each rank computes its 𝑎, 𝑒, 𝑏 values locally, and then a global

reduction among those three values is carried out. Each rank then recurses.

Lemma 8.4. With 𝑝 processors and assuming an initial 𝑂 (𝑛/𝑝) distribution, DHIndex

runs in 𝑂 (𝑛/𝑝) computation time and 𝑂 (log 𝑛 log 𝑝) communication time.

Proof. Each processor only iterates over its data following the pivot. By Lemma 8.2–8.3,

the runtime is then 𝑂 (𝑛/𝑝). The collective operations add 𝑂 (1) for computation time.

For the communication time, there are collective communications performed each round

163

0.0

0.5

1.0

1.5

1k 10
k

10
0k 1m 10

m
10
0m 1b

S
p
ee
d
u
p

bucket sort dhindex

Figure 8.2: Evaluating sequential DHIndex, sort, and bucket.

costing log 𝑝 each. In each round, a constant fraction of the input is removed. As such,

there are at most 𝑂 (log 𝑛) rounds, resulting in 𝑂 (log 𝑛 log 𝑝). �

8.4 Implementation and Evaluation

We implement in C++ and evaluate with two systems. For a single node, we use dual-

socket Intel Xeon Gold 6140 processors. For distributed scaling, we use a cluster with

dual-socket Intel Xeon E5-2683 v4 processors. We synthetically generate data by choosing

list elements independently and uniformly at random ranging over the size of the list. We

use 5 random inputs and 10 trials for each.

First, we evaluate on a single shared-memory system running sequentially, shown in

Figure 8.2. We vary the input size and normalize all algorithms against the fastest prior

algorithm, bucket. As the size increases, DHIndex becomes faster than the bucket algo-

rithm.

Next, we study the strong scaling of DHIndex. In Figure 8.3 we scale DHIndex on a

single compute node. The slope of the fit line is −0.85 with 𝑅2 = 0.9859, close to the ideal

slope −1.

We then study the weak scaling of DHIndex across the distributed cluster, keeping the

data constant per rank. Figure 8.4 shows the result. Even at 2048 cores, as the problem

164

2−3

2−2

2−1

20

21

1 2 4 8 16 32

Number of Cores (on 1 node)

T
im

e
(s

ec
)

Figure 8.3: Increasing the number of threads available to DHIndex on a single node com-
puting 100 M entries. Even sequentially DHIndex is faster than bucket.

2.0

2.2

2.4

2.6

0 500 1000 1500 2000

Number of Cores (32 per node)

T
im

e
(s

ec
)

Figure 8.4: Increasing the number of cores while increasing the input size, with 100 million
entries per core.

size scales from 3 B to 200 B, the runtime ranges by 0.2 seconds. The slope of the fit line

is 0.000058 with 𝑅2 = 0.4025, close to the ideal slope 0.

8.5 Summary

We present a new recursive method for computing the ℎ-index that is amenable to par-

allelization. We implemented our algorithm and experimentally show that it is able to

compute ℎ-indices on lists with hundreds of billions of elements in tens of seconds and

is faster than sequential algorithms for large inputs. Not only does this algorithm provide

performance improvements from existing algorithms, but it enables computation of cores

and nuclei in a scalable manner on distributed systems.

165

CHAPTER 9

SCALING OUT: ELASTIC AND DISTRIBUTED COMPUTATION

Graph analysis is a crucial part of many data analysis pipelines. Numerous graph algo-

rithms and systems have been developed to tackle a large range of problems. Most graph

algorithms and systems have been developed as static graph systems—they start by load-

ing an input graph, perform some computation, save results, and finally shutdown. Many

large graphs are generated from continuous processes, such as website visits, computer

network traffic, and more. As graphs have grown in scale, increasing attention has been

made towards treating them as dynamic graphs, where they change over time and remain

in-memory on a system [26]. High performance systems that handle massive dynamic

graphs, those in the hundreds of billions of edges, are increasing in importance [40].

There have been dozens of large, distributed graph systems developed over the last

decade [184]. In many cases, dynamic graphs are partially supported: the underlying sys-

tem may support some form of updates, and many graph algorithms can be continued from

a prior state. Unfortunately, such systems tend to not work well in practice on rapidly

changing graphs due to architectural decisions resulting in large start-up and tear-down

costs. Many dynamic graph algorithms, especially those which are locally persistent [211,

8] and well-suited for vertex-centric distributed systems [179], may have significant run-

time variance between batches of edge changes [77]. Similarly, the rate of change of graphs

can vary significantly [209]. A crucial yet overlooked factor in dynamic graph systems is

elasticity: the ability of a system to rapidly support scaling computational resources up and

down, to match demand, meet constraints, or optimize an objective [189, 15, 100, 61, 114].

Why is elasticity important, and especially so for dynamic graph systems? First, dy-

namic graphs change over time. As they grow, their scale changes, and over time the

underlying infrastructure requirements, such as memory, change. Second, graphs can ex-

166

perience periods of relative calm and periods of significant bursts of changes. Scaling up

during bursts and down during calm periods can provide both cost savings and performance

gains. Third, even among identically sized batches, some batches necessarily take much

longer to process than others [77, 211, 8]. In many cases the cost of the batch is not quickly

predicable and so the ability to elastically scale based on the runtime behavior of the batch

is important. Fourth, for both static and dynamic graphs, many iterative algorithms re-

quire less work for later iterations. Scaling down accordingly can bring significant cost

savings [250, 205, 113].

Overall, elastic systems can make trade-offs between runtime performance, memory

demand, and cost. Inelastic systems need to continuously consume resources demanded for

the peak scale. Elasticity has recently been recognized as an open and important research

direction in distributed graph systems for low-latency queries on dynamic graphs [113].

9.0.1 Design Goals

Motivated to provide an elastic dynamic graph processing system for modern, large graphs,

we introduce five specific design goals for such a system. Let 𝑃 be the number of processors

in the system.

Goal 9.1. The system can operate on graphs with hundreds of billions of edges and skewed

degree distributions.

Goal 9.2. At any point in time, all system participants operate with 𝑂 ((𝑛 + 𝑚)/𝑃 + 𝑃)

memory, where 𝑛 and 𝑚 are the current number of vertices and edges, respectively.

Goal 9.3. The system is scalable, and so the only dependence on 𝑃 for frequent operations

is 𝑂 (log 𝑃).

Goal 9.4. The graph is dynamic and can be continuously updated. Maintenance algorithms

should optimize for low-latency and low-variance runtimes and should support concurrent

queries.

167

Goal 9.5. The system can scale up or down, manually or automatically, during computa-

tion to meet demand.

9.0.2 Contribution

We propose ElGA, a distributed graph system that is able to perform computation on

rapidly changing graphs and can do so while the underlying infrastructure scales up and

down. Inspired by key-value stores that scale from single nodes to global systems [263],

ElGA uses a shared-nothing architecture [242] with a reliable and scalable message pass-

ing system. The main question is how to identify which graph edge belongs to which pro-

cessing agent given a continuously changing graph. ElGA uses consistent hashing [137]

to solve this. Prior dynamic graph partitioning approaches that address skewed degree

distributions have required information about all vertices in memory [1] (taking 𝑂 (𝑛)

space), which does not meet Goal 9.2 and introduces challenges for processing concur-

rent graph changes from independent sources. We remove this dependence through the use

of sketches [102] where a small, fixed amount of memory contains partitioning information

for the whole graph.

Through our design, ElGA meets the above goals. At the same time, our architecture

provides better runtime performance than existing static distributed graph systems. We

show that distributed graph systems which are both dynamic and elastic do not have to sac-

rifice performance or scalability against their static graph system counterparts. We release

ElGA as an open source system to encourage development and further improvements to

distributed, dynamic, and elastic graph systems1.

The remainder of this chapter is as follows. In § 9.1 we provide necessary background

and a review of existing distributed systems. In § 9.2 we describe ElGA, including its pro-

gramming model and architectural details. In § 9.3 we perform an experimental evaluation

and finally in § 9.6 we summarize the chapter.

1ElGA is available at https://github.com/GT-TDAlab/ElGA.

168

https://github.com/GT-TDAlab/ElGA

9.1 Background and Related Work

9.1.1 Vertex-Centric Models

Many dynamic algorithms are vertex-centric and communicate over edges in iterations.

These are known as locally persistent [211, 8]. Within vertex-centric algorithms there are

synchronous algorithms, where each vertex can only be processed once before receiving

updates from all neighbors, asynchronous algorithms, where vertices are processed when

all necessary neighbor messages are provided, and partially synchronous where asynchrony

occurs with larger, global synchronous levels [84]. In many distributed graph systems a

vertex may be duplicated for load balancing across multiple independent nodes, which we

call replicas.

9.1.2 Distributed Graph Systems

Classification of Distributed Graph Systems

There are numerous distributed graph systems serving a large variety of purposes. There are

two main dimensions that determine what graph system is suitable for a given application:

the properties of the input graph and the desired algorithms. In this section we provide a

classification to explain where dynamic graph systems fit in.

Starting from the graph properties, the first classification point is whether the input

can fit into memory across the system or not. If the graph is too large to fit, streaming

graph algorithms [186], sparisification [72], sampling [157], approximations [128], and

other randomization strategies, e.g., [5], can be used. We address graphs that can fit into

memory across the entire system. The next point is whether the graph is static, i.e., it will

not change, or dynamic. If it is static, there are block-based methods, vertex-centric meth-

ods, among others [184]. We focus on dynamic graphs. Next, we consider three different

algorithm needs. First, some algorithms only perform neighbor traversals or similar sub-

graph lookups, typically following vertex label constraints. Graph databases are used in

169

this case [27]. Second, some algorithms require a temporal history of the graph, and so

temporal graph systems are used [145, 118]. Third, algorithms may be used for real-time

or interactive applications and need results on the most recent graph [26]. Our focus is on

this need. In the next section, we drill down based on what the desired latencies of the

algorithms are and what kind of scale the graph requires.

Dynamic Graph Systems

There are numerous distributed graph systems that have been proposed and developed and

many have some notion of a changing, or dynamic, underlying graph. [26] provides a

thorough review of prior systems. Table 9.1 presents a comparative overview of dynamic

and elastic graph systems; the columns and systems are described in the following.

Definition 9.1. A system is scalable if it meets Goals 9.1–9.3: it has been shown to run

on large graphs, does not require storing all vertices or edges on one node, and does not

depend linearly on the number of processors in time-sensitive operations.

There are many scalable systems and programming models developed for static graphs

and with fixed infrastructure, including Pregel [179], Blogel [266], Giraph [110], GraphX [105],

and Gelly [41]. These systems provide programming models [184] and, in many cases, ro-

bust and flexible code bases that dynamic graph systems develop on top of.

Definition 9.2. A system is partially dynamic if it can re-use prior output to continue an

incremental computation.

Several systems have been developed that are partially dynamic, but do not specifically

support low-latency updates. Sprouter [2] and CellIQ [126] address dynamic partitioning

costs, but do not address the batch startup costs or elasticity. GraphTau [127] can oper-

ate in a partially dynamic manner but was built to provide temporal analysis of graphs.

GraM [265] focuses largely on static graphs with fixed partitioning. Delta-BiGJoin [11] is

an approach implemented in Timely Dataflow [198] that is optimized for efficient subgraph

170

Table 9.1: Dynamic and elastic properties of graph systems.

System

O
pe

n
So

ur
ce

Sc
al

ab
le

Pa
rt

ia
lly

D
yn

am
ic

Fu
lly

D
y-

na
m

ic

E
la

st
ic

Pregel [179] X
Blogel [266] X X
Hadoop/Giraph [110] X X
Spark/GraphX [105] X X
Flink/Gelly [41] X X

Spark/GraphX/Sprouter [2] X X X
Spark/GraphX/CellIQ [126] X X
Spark/GraphTau [127] X X
GraM [265] X X
Timely/Delta-BiGJoin [11] X X
Kineograph [46] X X

InfoSphere/UNICORN [244] X X
Flink/Gelly Streaming [41] X X X
ZipG [140] X X
ChronoGraph [74] X X
Naiad [198] X X
Kickstarter [256] X X X
Concerto [154] X X
Vaquero et al. [252] X X

Spark/GraphX/EdgeScaler [204] X X
GRAPE [79, 76, 78] X X X
FaRM/A1 [40] X X X
JoyGraph [250] X X
Graphless [248] X X
iGiraph [112, 111] X
Joker [136] X

ElGA X X X X X

171

queries. Kineograph [46] operates on snapshots of a dynamic graph and leaves elasticity as

a future goal.

Definition 9.3. A system is fully dynamic if it supports low-latency queries and low-latency

batch processing, meeting Goal 9.4.

There are many fully dynamic distributed graph systems, which address the need to run

low-latency dynamic graph algorithms. To a large extent these systems have not focused

on scalability or elasticity. UNICORN [244] is built on InfoSphere Streams and provides

low-latency incremental graph updates, but it has not been shown to scale to large graphs or

to provide elasticity. Gelly Streaming [41] focuses on streaming graph algorithms and does

not address elasticity or directly support locally persistent algorithms. ZipG [140] provides

low-latency queries but focuses on subgraph extraction and does not address elasticity.

ChronoGraph [74] is a fully dynamic system built in NodeJS, but not elastic. Naiad [198]

is a general purpose dataflow system. KickStarter [256] maintains an approximate com-

putation and re-computes exactly on-demand. Concerto [154] uses elastic key-value stores

internally, but does not explicitly support elasticity. [252] re-partitions internally on graph

changes but does not address elasticity.

Definition 9.4. A system is elastic if it can rapidly scale its infrastructure, manually or

automatically, to meet demand [189, 114].

There are elastic graph systems, but to date these have not focused on dynamically

changing graphs. GRAPE [79, 76, 78] consists of a series of work, some of which address

partially dynamic graph algorithms and others which address various aspects of elasticity.

The GRAPE model is not scalable as it requires a global view of the graph on a single

machine. A1 [40] is a dynamic attributed graph database that is in-memory and communi-

cates over RDMA by building on FaRM [65]. A1 inherits FaRM’s elasticity, but is limited

in its scope to querying subgraphs and retrieving vertex and edge attributes; it does not

support dynamic graph algorithms. JoyGraph [250] demonstrates the advantages of elas-

172

ticity for static graphs, but does not address dynamic graphs. Graphless [248] operates in

the serverless model but does not support dynamic graphs. iGiraph [112, 111] elastically

scales during computation to provide cost and performance benefits, but does not support

dynamic graphs. Joker [136] is a dataflow system that addresses elasticity, however it has

not been developed to address graph problems.

9.1.3 Achieving Elasticity in Clouds

Consistent hashing was developed as a caching technique to decrease hot spots in large,

distributed data sets [137]. The idea is to place servers and data uniformly at random in

a ring, and then map data to the closest server. Hashes can be used on server IDs and

data keys ensure uniform placement of both servers and data. Importantly, when a server

joins or leaves, the data mapped to it moves to only a few neighboring servers and all other

data has no movement. This effectively provides both smoothness for partition keys and

reasonable load-balance across the servers.

Chord [241] was one of the first distributed systems to use consistent hashing. Since

then, it has been foundational for many systems that have churn in participants, such as

distributed hash tables [134], and in cloud systems that are highly elastic, such as Dynamo,

Amazon’s key-value store [57]. Consistent hashing has been applied for graphs by treating

vertices as keys, providing in high-quality partitioning [1]. However, such approaches only

partition vertices or require global information about each vertex.

9.1.4 Sketches

Sketches are tools that allow for approximate results using sublinear space [102]. The

first sketch that counts distinct types of elements in a stream is Count Sketch [43]. It

works by creating a small matrix and, for each element in the data stream, incrementing

or decrementing one cell in each row based on row-specific hashes for the data. The total

count is then approximated by the average value of the cells. The CountMinSketch [51]

173

improves the Count Sketch by only going in one direction. Instead of adding or subtracting,

CountMinSketch will only add values. A minimum instead of the average is used. For

a fixed probability and an additive error of 𝜀𝑚 after 𝑚 elements, its space complexity is

Ω(1/𝜀). We are not aware of prior uses of sketches in dynamic graph partitioning.

9.2 ElGA

The key to achieving scalability and elasticity in a distributed graph system starts with how

the vertices and edges are partitioned among the processing units in the system. Due to the

irregular nature of graphs, balancing workloads is crucial. When new compute resources

are added or removed, we want to both keep the system well-balanced and to limit data

movement, allowing both the graph algorithm runtime and elastic scaling to be quick. Once

the partition of each edge is determined, the rest of the system falls naturally into place: any

communication through an edge can communicate with the edge owner and vertex-centric

programs will work.

Our key contribution consists of a new way of placing the edges given challenging

constraints: the graph is dynamically changing, the nodes owning edges are being added

and removed, and we cannot use more than a (small) constant amount of global storage.

We solve this by pulling together concepts from cloud computing and streaming algo-

rithms. First, every component in ElGA that needs to be scalable builds on consistent hash-

ing. This forms the backbone of ElGA. Second, ElGA is flexible with receiving messages

out-of-order and/or destined for the wrong node. It buffers such messages appropriately

and forwards them to the best known destination to achieve eventual consistency. Third, in

any situation where global knowledge of the graph is required, we apply sketches. This al-

lows us to globally make decisions about vertices using a small constant amount of memory

which can be updated over time.

In the remainder of this section we provide an overview of our system, describe its

programming model, and discuss important architectural details.

174

StreamersData Sources Agents

Directories

ClientProxy

eries (low latency) Updates (med latency) Directory / sketch updates
(high latency okay)

Clients

ElGA ElGA Core

Figure 9.1: An overview of the components of ElGA.

9.2.1 System Overview

A high-level overview of ElGA is shown in Figure 9.1. ElGA follows a shared-nothing

design [242]. This means that each entity is single threaded and only communicates via

message passing. ElGA is composed of several entities: Agents run graph algorithms and

hold graphs in memory; Streamers send graph updates to Agents; and Clients proxy

end-user queries to Agents to receive algorithm results. We call Agents, Streamers, and

Clients “Participants”, as they all need to determine which Agent has ownership of a

given edge. The system boundary provides the entry point for other programs to interact

with ElGA. We have support for simple TCP and UNIX socket protocols for crossing the

system boundary.

Finally, there is a directory system in ElGA which both informs Participants which

Agent is responsible for what edge and facilitates synchronization as needed in bulk-

synchronous algorithm steps. The directory itself needs to be scalable, as the number

of Participants can grow and each Participant establishes a connection to the directory

system.

175

ElGA contains low-latency, medium-latency, and high-latency connections. Low-latency

connections need to be returned as quickly as possible. These are used by the clients to

query specific algorithm results or properties of vertices. Medium-latency connections

consist of updates that are on some critical path for reducing the staleness of a client query.

This consists of both updates to the graph and updates required by a batch algorithm to

finish computation. Finally, there are connections that allow high-latency which support

elastic scaling and load balancing, but are not on any critical path for future client queries.

9.2.2 ElGA Core – Programming Model

ElGA follows a locally persistent dynamic graph algorithm model [211, 8]. Each algorithm

is executed when it has some changed state, either a message from a neighbor or replica.

The algorithm runs from the perspective of a vertex. It can save local state and send mes-

sages along its edges. This is a common model for scalable graph systems, and while

there are many alternative models, such as edge-centric [215], subgraph-centric [247], and

block-centric [266], this model continues to perform with state-of-the-art results [12].

To support more complicated dynamic graph algorithms than only bulk-synchronous

parallel algorithms, such as PageRank, ElGA has support for receiving specific instructions

from an algorithm for which edges to expect changes on. If it needs to wait for a result from

another vertex, then it places itself in the waiting set for that vertex, at the given iteration.

Only when that specific message is received will the vertex be removed from the waiting

set. When a vertex is no longer waiting on any messages, it enters an active state and can

be processed again.

176

Send / Receive (1) messages (2) acks based on algorithm steps

Node

Directory

Agent

GraphAlgs

BFS

CC

Agents
Lists

CM
Sketch

Agent

GraphAlgs

BFS

CC

Agents
Lists

CM
Sketch

NodeAgent

GraphAlgs

BFS

CC

Agents
Lists

CM
Sketch

Agent

GraphAlgs

BFS

CC

Agents
Lists

CM
Sketch

NodeAgent

GraphAlgs

BFS

CC

Agents
Lists

CM
Sketch

Agent

GraphAlgs

BFS

CC

Agents
Lists

CM
Sketch

Agents
Lists

Count
Min

Sketch

…

(4) re-broadcast
messages

Directory

Agents
Lists

Count
Min

Sketch

(3) send ready to sync(5) receive all agents ready
advance to next step

Figure 9.2: Agents sending messages to neighboring vertices and advancing to the next superstep through Directories.

177

The process of performing an iteration in this model is shown in Figure 9.2. First, (1)

Agents will send messages—as the algorithm dictates—to various neighbors and (2) wait

to receive acknowledgements from each. When each internal vertex is inactive (3) Agents

report they are ready for the next superstep. (4) Directories re-broadcast ready messages

among themselves. Finally, (5) when all Agents are ready, the superstep is advanced and

vertices which are marked to become active will begin processing.

9.2.3 Directory System

Inside of the directory system, there are Directories and a single DirectoryMaster (not

shown in Figure 9.1). The DirectoryMaster serves as a bootstrap service for ElGA: it is

queried once by any component to find a Directory that is open to receiving communication

and only queried again if the current Directory leaves the system. When Agents join or

leave, or the graph changes enough to impact load balancing, Agents inform their respec-

tive Directory server. To keep each Directory in sync, all Directories internally broadcast

messages appropriately. This update then propagates throughout the system and eventually,

all Participants will use the latest directory. During the gap when some Participants have

stale information, messages will be forwarded.

The full broadcast size is 𝑂 (𝑃 + 𝑑𝑤), as each Agent’s IP address and connection in-

formation are sent, 𝑃 is the number of Agents (one Agent per core), 𝑑 is the Count-

MinSketch depth, and 𝑤 the CountMinSketch width. Each Directory also keeps track

of the current batch ID, a monotonically increasing clock used to bootstrap Agents and

ensure consistency. As shown in Figure 9.2, Directories are also used to facilitate global

synchronization by waiting for their connected Agents to be ready and broadcasting state

changes.

178

Sketch Size

As sketches are broadcast throughout ElGA, we want to ensure that they are appropriately

sized. For a given number of edges, we can compute the size desired for a given error at

a probability. Consider a point in the stream with 𝑚 edges seen. Let 𝑑𝑖 be the degree of

vertex 𝑖 at this point and 𝑑𝑖 be the estimated degree. There are two parameters: the width

of the table and the depth. The width can be set to d𝑒/𝜀e and the depth dlog 1/𝛿e, and the

sketch guarantees an additive error 𝑑𝑖 ≤ 𝑑𝑖 + 𝜀𝑚 with probability 1− 𝛿. If a graph will have

100 billion edges, we can get a 99.965% probability of each degree estimation within just

over 1 million if we use a width of 218 and a depth of 8. If the vertex replication threshold

is 2 million, this table size will suffice and fits in 8 MB. We explore various table sizes in

§ 9.3.5.

9.2.4 Agents

Agents are responsible for holding the graph in memory and carrying out the computation

on the graph. They provide the vertex-centric model for algorithms to run in and manage

all operations on components of the graph.

Agents themselves are relatively straightforward. They operate as a state machine and,

during computation, either execute the algorithms on their vertices, send updates to other

Agents, or receive updates from Agents. They continuously poll on their communication

channel and act on whatever packet they receive. First, the packet is inspected to ensure

that the endpoint remains valid. If the receiving Agent is no longer the correct destination,

the packet is forwarded to the latest, correct Agent. Each packet with edge data may

contain iteration information. If it is for an iteration in the future, the packet is stored until

the computation can catch up. In ElGA’s asynchronous mode, vertices are individually

processed when they no longer have any outstanding updates they are waiting on. In the

synchronous mode, each vertex must have no outstanding updates. In between supersteps,

some vertices may have updates that are sent to their replicas, in the case that the vertex

179

FindOwner
edge (u, v) Estimate deg(u) with sketch

Find Agents
for vertex u

Find Agent for (u, v)
among Agents for u

Consistent hash (CH) on all agentsCH

Figure 9.3: Participants look up Agents for edges by estimating the degree and then
applying two consistent hashes.

is high-degree and split across multiple Agents. Garbage collection of received neighbor

values and other book-keeping data occur at superstep boundaries.

While a batch is running, the graph does not change: any edge changes are buffered.

Once the batch is over, these updates can be processed and the Agent becomes ready

to perform a computation again. Depending on the algorithm, only updated (or active)

vertices will be processed at the next iteration.

Finding an Edge

Each Participant receives enough information from its Directory to find the owner of any

edge. This process is the heart of ElGA’s load balancing scheme, and it enables dynamic

graphs and elastic scaling. This process is outlined in Figure 9.3.

A participant will first perform a query into the CountMinSketch to identify how many

Agents are responsible for handling the given vertex’s edges. This is a biased approxima-

tion as it may exceed the degree but not underestimate it. A participant will then use a

consistent hash to find the starting Agent and return Agents for the number of replica-

tions, based on the degree. It will then perform a second consistent hash on those Agents

to find the final Agent that is responsible for the edge. Each consistent hash can be im-

plemented with a binary search over the Agent list taking 𝑂 (log 𝑃). Querying the degree

estimate takes 𝑂 (𝑑), where 𝑑 is typically 8.

Concretely, each consistent hash consists of the following. Each Participant has a list

180

of all the Agents. Each Agent ID is then hashed and added to a vector. To query for a

vertex, the vertex ID is then hashed and the next highest Agent in the vector is selected

as its owner. If the CountMinSketch indicates a replication factor of 𝑘 > 1, then the

Participant needs to select between the next 𝑘-highest Agents in the vector. In this case,

a second hash is performed on the destination of the vertex to choose which of those 𝑘

Agents.

For efficiency reasons, if only some Agent responsible for the vertex is required, e.g.,

for a vertex query, then the last consistent hash is bypassed and one replica is chosen at

random.

Virtual Agents

Despite using two-levels of consistent hashing and sketching, creating only as many Agents

as hardware cores still yields some load imbalance. To address this problem, we introduce

virtual agents. Instead of putting a single ID into the vector, an Agent will put a variable

number of IDs into the vector. We experimentally determined 100 as a good number (see

§ 9.3.5). This significantly improves the load balance but increases the lookup time by a

constant factor (O(log 100)). Future work could explore dynamically adjusting the number

of virtual agents over time based on memory or computation pressure or for heterogeneous

systems.

Agent Elasticity and Sketch Updates

If an Agent joins or leaves, or receives an update to its CountMinSketch, it needs to ensure

that it does not have any edges that need to migrate to another Agent. In ElGA, we take

a straightforward approach of re-computing the correct destination for all current edges.

Any edges that are in the wrong Agent are removed and forwarded appropriately. No state

change can occur until receiving acknowledgements.

When an Agent leaves, it only signals it is leaving to the Directory. After receiving

181

the next directory update, it evaluates its edges normally and determines that they all need

to leave. Only when it has no edges and has waited a period of time will it disconnect.

To handle fully elastic autoscaling, ElGA comes with an API for metric collection and

autoscalers. We implemented a simple reactive autoscaler that computes the exponential

moving average of a metric and scales to the average divided by a scaling factor. We

implemented Agent metrics for graph change rates, client query rates, and superstep times.

Metrics are passed to Directories.

9.2.5 Communication

Communication in ElGA occurs using ZeroMQ [115]. ZeroMQ is designed as a network-

ing layer that promotes various communication patterns. For example, it provides a pub-

lish/subscribe pattern, where multiple subscribers can receive select updates from a pub-

lisher. Internally, ZeroMQ handles message routing and resiliency. We configure ZeroMQ

to use TCP between nodes and its interprocess protocol within a node. ZeroMQ operates on

separate threads, allowing for overlapped computation and communication management,

including packet routing, buffering, and filtering.

ElGA uses a simple serialization and deserialization protocol on top of ZeroMQ mes-

sages. The first byte of any message is a packet type which determines how a Participant

will handle the message. ElGA’s protocols typically involve direct memory copies into

ZeroMQ’s network buffers.

For low-latency messages, we use the REQ/REP model, which is designed for blocking

requests and responses.

For messages with medium-latency, we use the PUSH communication pattern, which is

a non-blocking send. This allows the client to continue executing while ZeroMQ finishes

sending the message. This can be crucial when there is a large backlog of messages or

potential networking issues. In cases where an explicit acknowledgment is required, a

second PUSH is then sent in return.

182

Finally, we use the PUB/SUB model for high-latency messages. Here, Participants

will subscribe to the messages they are interested in: Agents subscribe to synchronization

barriers from Directories, all Participants subscribe to directory updates, and so on. As

ElGA uses only a single byte for the message type, filtering subscriptions in ZeroMQ is

efficient. ZeroMQ internally will route, filter, and duplicate the messages as intended.

There is an overhead with ZeroMQ: using Mellanox ConnectX/5 NICs, we bench-

marked the latency of an MPI send at around 1 𝜇s, a raw TCP send at 4 𝜇s and a send

through ZeroMQ at over 20 𝜇s.

9.3 Experiments

In this section we describe our experiments to understand and evaluate the design deci-

sions and performance of ElGA. Following standard distributed graph system experimen-

tal methodologies [75], we run five independent trials for each experiment. We report the

means and, assuming a t-distribution as the sample size is small, we show the 95% confi-

dence intervals for the mean. All results were checked for correctness among the baselines

and ElGA, and, when applicable, against ground truth.

We implemented ElGA in C++17 and use ZeroMQ 4.3.4. Our dynamic graph is stored

as a flat hash map with vectors. We configured all systems to use 64-bit integers for vertex

IDs. We compiled with GCC 8.3.1 using O3. We store both in and out edges.

9.3.1 Experimental Environment

Our experimental environment consists of 65 servers, each with dual-socket Intel Xeon E5-

2683 v4 processors with 16 cores each, 512 GB RAM, and three local SSDs. One server

is dedicated to filesystem and other metadata, and so 64 servers are used for computation.

Each has Mellanox ConnectX 5 NICs and are connected to an Arista 7500E switch, which

supports 100 Gbps. Jumbo frames were enabled. We run Ceph [261] on each node to

provide a distributed filesystem for storing edge lists and auxiliary information and we

183

run HDFS [36] for the state-of-the-art graph systems that we used as baselines, as they

depend on it. None of our experiments compare graph loading times and and so the use of

HDFS or Ceph is not being evaluated; we chose Ceph as it achieves higher performance

on our system, however the baselines are implemented with HDFS. We use CentOS 8 and

performed basic system tuning using tuned’s hpc-compute profile.

9.3.2 State-of-the-art Baselines

While there are no known dynamic and elastic baselines, we evaluate against Blogel [266]

and GraphX [105]. We chose Blogel as it has been shown to be the state-of-the-art static

system [12] and we chose GraphX both as it exhibits strong performance and is the plat-

form for many snapshot-based partially dynamic systems (see § 9.1.2). We confirm pre-

vious results [12] that show that the Voronoi partitioning variant of Blogel (which we

call Blogel-Vor) is not competitive against their simple vertex partitioning implementation

(which we call Blogel) or even GraphX, even when partitioning time is ignored. Unfor-

tunately, Voronoi is the only partitioning strategy implemented for the algorithms in our

experiments.

We extensively explored the performance of both Blogel and GraphX in terms of MPI

libraries and Java systems, Java garbage collection parameters, and more. We found that

using dedicated SSDs for scratch storage for GraphX, along with the G1 garbage collection

operating in parallel, a dynamic number of executors, and initial heap allocations of almost

all available memory allowed GraphX to be competitive against Blogel and other systems.

We configured GraphX to use its three main built-in partitioning strategies. We found that

Java 8 provided the fastest runtimes for GraphX, although the loading times were faster

with Java 11. As such, we use OpenJDK Java 8 throughout. For Blogel, we tried different

compilers and MPI libraries and conclude that using OpenMPI 3.1.4 and GCC, as suggested

in the original papers, still provides the fastest end-to-end runtimes. We use GCC 8.3.1 with

O3. We found using 8 MPI ranks per node for Blogel was fastest, whereas GraphX was

184

fastest with per-stage dynamic executors choosing the number of cores from 1 to 64 during

runtime. We used the best found settings for all shown experiments.

Together, these two baselines represent the hardest cases for ElGA—if we compete

well against them, we show that our design and implementation which supports dynamic

graphs could even be used for end-to-end improvements in static cases. Our experiments

show this is indeed the case. We stress that we do not include loading, partitioning, or

saving time, as the baselines are not built to handle dynamic graphs and have unoptimized

code in each area.

9.3.3 Static and Dynamic Algorithms

We evaluate with two iterative vertex-centric algorithms commonly used in distributed

graph system benchmarks [12] that are implemented on Blogel, GraphX, and ElGA: PageR-

ank and weakly connected components (WCC). In PageRank, at each iteration, a vertex

receives messages from each in-neighbor, aggregates them with a sum, scales the value,

and sends its values out to its out-neighbors. In WCC, a vertex aggregates and sends with

a minimum instead of a sum and only sends updated minimums, but to both in- and out-

neighbors. In the static case, WCC initializes each vertex to a unique identifier. In the

dynamic case with insertions, known as the incremental case, each vertex retains its old or

initial component information and only vertices directly modified in the batch are activated.

When a vertex receives a message, it becomes active.

To effectively evaluate the graph systems, we ensured that all algorithms are the same

across each system, including termination conditions. As such, the performance differ-

ences come from the systems themselves. We ensure our implementation’s correctness by

comparing against the baselines and ensured floating point values were correct up to 10−8.

For both baselines, we used the respective algorithms distributed with the baselines, from

the original authors. We observed each system perform the same number of supersteps.

While PageRank and WCC are common graph algorithms, important future work in-

185

Table 9.2: The graphs used in our experiments.

Graph A-BTER Scale 𝑛 𝑚 EL Size

Twitter-2010 [152] - 42 M 1.5 B 25 GB
Friendster [267] - 65 M 1.8 B 31 GB
UK-2007-05 [32, 33] - 105 M 3.7 B 63 GB

Datagen-9.3-zf [75] - 555 M 1.3 B 34 GB
Datagen-9.4-fb [75] - 29 M 2.6 B 65 GB
Email-EuAll [159] ×5000 1.3 B 5.6 B 105 GB
Skitter [159] ×200 339 M 6.3 B 119 GB
LiveJournal [17, 161] ×100 484 M 8.6 B 161 GB
Amazon0601 [156] ×2000 807 M 9.8 B 183 GB
Graph500-30 [42, 197] - 448 M 17 B 319 GB
Gowalla [47] ×10000 2.0 B 28 B 568 GB
Patents [159] ×1000 3.7 B 33 B 673 GB
Pokec [245] ×1000 1.6 B 44 B 898 GB
Pokec [245] ×2500 4.0 B 112 B 2.3 TB

cludes studying the performance of other algorithms in ElGA which exhibit different bot-

tlenecks and communication patterns [125].

9.3.4 Datasets

ElGA is designed to address large graphs which cannot fit in shared memory. As such, we

focus our evaluation on large datasets. We use datasets from LAW [32] and SNAP [160].

We evaluate on representative datasets from social networks, web crawls, product pur-

chases, location, citation, and email data. We further test with the largest published and

available synthetic graphs from the LDBC Graphalytics benchmark [125]: the Graph500

30-scale graph [42, 197] and the largest currently published Datagen fb and zf graphs [75].

In most cases, the available datasets are not as large as modern commercial or real-

world datasets and these publicly available graphs are all easily run on a single, shared-

memory system. To evaluate ElGA’s performance over the variety of datasets it is intended

for, along with the intended scale, we use A-BTER [238]. This takes an existing graph—

that can fit into shared memory—computes degree and clustering coefficient distributions,

186

0.41x

0.47x

0.40x 0.49x
L

iv
eJo

u
rn

al

Original x 1 x 10 x 100

0

5

10

15

T
im

e
(s

ec
)

a aElGA Blogel

Figure 9.4: Per-iteration runtime of PageRank on LiveJournal with three A-BTER gen-
erated LiveJournal-like graphs. The relative runtimes (shown in blue), i.e., ratio between
ElGA’s and Blogel’s runtimes remain consistent.

and then generates random scaled up graphs that share the same distributions and proper-

ties. It is important to test on larger datasets as unexpected inefficiencies and complications

can arise at scale. By using A-BTER, we are able to experiment on a variety of representa-

tive graphs at scale. Table 9.2 shows the datasets used in our experiments.

To understand how performance may change with A-BTER synthetic graphs, in Fig-

ure 9.4 we show the runtime on the original LiveJournal [17, 161] graph, a synthetic version

with no scale difference (×1), and two scaled-up versions (×10 and ×100). While there are

some relative differences in system performance as the graphs’ scale increases, the runtime

at the same scales matches well for each system. These results extend to the other graphs

we tested, showing that A-BTER is a valuable tool for evaluating performance of graphs

with varying structure at larger scales.

We extended A-BTER to stream edge updates, allowing ElGA to directly receive the

graph as it is generated.

While all of these graphs are temporal and dynamic, the given datasets do not have edge

deletion or insertion information. As such, we model their dynamic change by first deleting

a random sample of edges and second adding the sample back in, as a batch.

9.3.5 Design Choices

We want to understand the impact of various design choices in ElGA. First, we look at the

hash function. The hash function plays a crucial role: it is used, along with virtual Agents

187

0

5

10

15

UK−2007−05 Amazon0601 x 2k

T
im

e
(s

ec
)

Wang

Mult

Abseil

CRC64

(a) PageRank Iteration Runtime

Wang Mult Abseil CRC64

U
K

A
m

azo
n

−
2k

1e+06 1e+07 1e+06 1e+07 1e+06 1e+07 1e+06 1e+07

0

250

500

750

0

250

500

750

N
u

m
.
o

f
A

g
en

ts

(b) Histograms of Edges per Agent

Figure 9.5: The hash function has a large impact on the runtime. We found that Wang’s
64-bit integer hash performs the best. The runtime performance follows the quality of the
edge distributions. Ideal is a single vertical line.

188

1 10 100 1000

1e
+

03

1e
+

04

1e
+

05

1e
+

06

1e
+

07

1e
+

03

1e
+

04

1e
+

05

1e
+

06

1e
+

07

1e
+

03

1e
+

04

1e
+

05

1e
+

06

1e
+

07

1e
+

03

1e
+

04

1e
+

05

1e
+

06

1e
+

07

0

250

500

750

Histogram of Edges per Agent

N
u

m
.
o

f
A

g
en

ts

Figure 9.6: The load balance distributions for 2048 Agents as the number of virtual agents
per Agent is varied from 1 to 1000 for Twitter-2010. Beyond 100 improvements do not
outweigh the computational cost (not shown here).

and the CountMinSketch, for every edge access to find the corresponding Agent. It needs

to be both fast and of high quality, that is, result in a uniform distribution. We evaluate

different hash functions in Figure 9.5. Mult is from [240], Abseil is a non-deterministic

hash similar to Mult used in the Abseil C++ library, and CRC64 [66]. Due to the number

of calls to the consistent hashing system, we use a 64-bit ring and avoid more expensive

hash functions, such as the commonly used cryptographic ones [57]. Thomas Wang’s [259]

is the best performing hash function tested and we use it for the remaining experiments.

Second, we show the impact of the number of virtual agents. With more virtual agents,

a larger number of nodes will need to receive or send new edges when an Agent leaves or

joins and each consistent hash lookup is more expensive. However, the number of edges

per transfer decreases and the load balance improves. In Figure 9.6, we show the load

balance distribution for Agents as the number of virtual agents per Agent is varied for

Twitter-2010. We found a similar behavior for all graphs. At 100 virtual agents per Agent

the distribution both has a high quality and sufficiently low lookup rates, and so we use this

value for all graphs.

Third, we evaluate our CountMinSketch parameters. Our sketch approach enables

high-degree vertices to be split across multiple Agents within ElGA. Each split incurs an

189

0.8

0.9

1.0

1.1

1.2

1e+03 1e+04 1e+05 1e+06

Sketch Width

O
v
er

h
ea

d
 (

se
c)

(a) Overhead per PageRank Iteration on Twitter-2010

1e+03

1e+04

1e+05

1e+06

1e+03 1e+04 1e+05 1e+06

Sketch Width

D
eg

re
e

E
rr

o
r

Max Mean

(b) Maximum and Average Degree Errors on Twitter-2010

Figure 9.7: The runtime cost of resolving edges to Agents along with the degree estimation
error as the table width varies. With a replication threshold even as low as 2 million, any
max degree error below the dashed line (at 1 million) means the sketch will result in no
replication error.

overhead, and so we only want to target vertices that cause significant load imbalance or

memory pressure and reduce the number of unnecessary replications. In Figure 9.7, we

explore the CountMinSketch width parameter. We vary the width and compute both the

runtime overhead per PageRank iteration and the maximum and average error in degrees.

We set the threshold high for replicating, at 107, and so we can use a small sketch size of

104.2, below the inflection point for added overhead and without replication error across

our datasets.

9.3.6 Scalability

We next study our scalability and show that the shared-nothing architecture is able to both

strongly and weakly scale. We focus on PageRank and show that with ElGA it scales up,

both with more cores per machine and more machines. In Figure 9.8, we vary the number

190

2

4

8

16

32

64

1 2 4 8 16 32 64

Nodes (with 32 agents per node)

T
im

e
(s

ec
)

Twitter−2010

Friendster

UK−2007−05

Email−EuAll x 5k

Skitter x 200

LiveJournal x 100

Amazon0601 x 2k

Gowalla x 10k

Patents x 1k

Pokec x 1k

Figure 9.8: The scalability of ElGA reporting PageRank iterations as the number of nodes
are varied. The larger graphs run out of memory on small numbers of nodes.

2

4

8

16

32

64

128

256

1 2 4 8 16 32

Agents per Node (with 64 nodes)

T
im

e
(s

ec
)

Twitter−2010

Friendster

UK−2007−05

Email−EuAll x 5k

Skitter x 200

LiveJournal x 100

Amazon0601 x 2k

Gowalla x 10k

Patents x 1k

Pokec x 1k

Figure 9.9: The scalability of ElGA reporting PageRank iterations as the number of
Agents per node are varied.

191

0

50

100

150

200

12 4 8 16 32 64

Nodes (with 32 agents per node)

T
im

e
(s

ec
)

Figure 9.10: ElGA’s weak scaling with the Pokec dataset. The scale ranges from ×39 to
×2500. A horizontal line is ideal.

of nodes and report the per-iteration PageRank time. For each graph, adding more nodes

results in lower runtimes. As more memory is required per node with fewer nodes, the

large graphs stop fitting into memory and so we cannot report their runtimes. In Figure 9.9,

we keep the number of nodes fixed at our cluster size, 64, and instead vary the number of

Agents that we run on each node. Similarly, adding more Agents results in faster runtimes.

Next, we look at weak scaling. We show the per-iteration runtime of PageRank as we

scale the Pokec dataset from 1.7 billion edges to 112 billion, while keeping the degree and

clustering coefficient distributions within 2% error. The results are in Figure 9.10. With

only a few nodes, and a significantly reduced amount of communication, ElGA performs

better per edge than itself at a larger scale. However, at these scales many real-world graphs

will not fit into memory. Above 16 nodes our scaling is close to ideal, a horizontal line.

192

0

20

40

60

80

Datagen−9.3−zf

Datagen−9.4−fb

Twitter−2010

Friendster

UK−2007−05

Email−EuAll x 5k

Skitter x 200

LiveJournal x 100

Amazon0601 x 2k

Graph500−30

Gowalla x 10k

Patents x
 1k

Pokec x 1k

T
im

e
(s

ec
)

ElGA

Blogel

GraphX−E2D

GraphX−E1D

GraphX−CRVC

Figure 9.11: ElGA’s per-iteration PageRank runtime compared against Blogel and GraphX, using 64 nodes. GraphX includes a signifi-
cant partitioning overhead (not shown here) and ran out of memory on the larger graphs. A t-test shows ElGA is fastest with 𝑝 < 0.0005
in all datasets except for Graph500-30, which is inconclusive with 𝑝 > 0.05. 95% confidence intervals are shown.

0

250

500

750

Datagen−9.3−zf

Datagen−9.4−fb

Twitter−2010

Friendster

UK−2007−05

Email−EuAll x 5k

Skitter x 200

LiveJournal x 100

Amazon0601 x 2k

Graph500−30

Gowalla x 10k

Patents x
 1k

Pokec x 1k

T
im

e
(s

ec
)

ElGA

Blogel

GraphX−E2D

GraphX−E1D

Figure 9.12: The weakly connected components runtime for ElGA, Blogel, and GraphX. In all cases, a t-test shows ElGA is fastest with
𝑝 < 0.0005 (except Graph500-30, where ElGA is fastest with 𝑝 < 0.03). 95% confidence intervals are shown.

193

9.3.7 Comparison with Static State-of-the-art

We compare PageRank iterations against static baselines in Figure 9.11. Given Blogel-

Vor’s poor performance against Blogel we do not show it in the results. GraphX runs out

of memory on the largest graphs. ElGA is designed to handle a constantly and rapidly

changing graph, yet we outperform the baselines even when ignoring partitioning time and

other static costs of those systems. This is a surprising result. Both Blogel, the second

fastest, and ElGA use C++. Blogel uses a CSR internally to hold the graph which is faster

than our flat hash maps (but do not easily support dynamic graphs). Further, Blogel uses

MPI, and as we showed in § 9.2.5 MPI has 20× lower packet latencies on our cluster. The

underlying filesystems’s I/O performance is not included in the timing results here.

As our algorithms are the same, we attribute our performance to an interesting property

not well explored in distributed and scalable graph systems: even with bulk-synchronous

parallel algorithms, allowing messages to arrive out-of-order, with communication handled

in separate threads, keeping global state limited, and using a shared-nothing server-based

polling system inside each Agent provide significant benefits. We are able to accommodate

the increase in computation with per-edge Agent lookups as Blogel is fastest with 8 cores

per node, likely due to MPI allreduces saturating the network, and we take advantage of all

cores.

To evaluate weakly connected components, we had to fix a bug in Blogel where it does

not consider an undirected form of the graph. We did this by symmetrizing the input graph

(which along with other I/O costs is not shown). The results are shown in Figure 9.12. We

were not able to run GraphX with CRVC partitioning as it ran out of memory on almost all

graphs. Similarly, Blogel-Vor did not provide competitive results and so is not shown. All

of our results show better performance for our tuned baselines than experiments reported

in [12] (with Haswell, not Ivy Bridge CPUs and more RAM).

194

EuAll LiveJournal

0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06

0

250

500

750

Time to Process Batch (sec)

C
o

u
n

t

STINGER ElGA

Figure 9.13: ElGA and STINGER maintaining components.

9.3.8 Comparison with Single Node Systems

We next consider the COST [187] of running ElGA on a single node compared with a

specialized inherently shared-memory algorithm and system. We are only aware of one

publicly available implementation of a dynamic WCC, which is part of STINGER [67].

We were unable to run STINGER on billion-edge graphs; we instead run LiveJournal and

EuAll at their original scale. In Figure 9.13, we show the insertion of the last 1000 edges.

STINGER can likely optimize for some easy batches due to its global view. It has a bimodal

distribution that is surprisingly similar across graphs. For LiveJournal, ElGA’s median

runtime is 0.027 seconds; STINGER’s is 0.032. Note that STINGER does not include any

distributed support and uses OpenMP to parallelize. We also compared with GAPbs [23], a

shared-memory parallel static graph system. GAPbs takes 0.94 seconds, including building

its CSR from an in-memory edge list and running WCC.

9.3.9 Dynamic Behavior and Elasticity

Even though for static cases it scales and performs well, ElGA is primarily designed to

be both dynamic and elastic. An important consideration for a dynamic graph system is

the rate of edge changes it can accept. In Figure 9.14 we show the edge insertion rate for

195

2e+06

2e+07

2e+08

2e+09

1 4 16 64 256 1024

Number of Agents

R
at

e
(e

d
g
es

/s
ec

)

Figure 9.14: The insertion rate of edges from Skitter. Agents densely fill nodes, so 64
Agents run across two nodes. The dashed line shows ideal linear scaling.

1 E
d

g
e

10k
 E

d
g
es

0 25 50 75 100

0.0

0.2

0.4

0.6

2

3

4

5

Batch Number

T
im

e
(s

ec
)

(a) The runtime for each batch. Note differing scales.

1 E
d

g
e

10k
 E

d
g
es

0 25 50 75 100

0

1

2

3

4

0

5

10

15

Batch Number

N
u

m
.
It

er
at

io
n

s

(b) The iterations until convergance for each batch. Note differing scales.

Figure 9.15: Maintaining connectivity on Twitter-2010. From scratch, ElGA takes 14
seconds. (Not shown here: GraphX takes over 49 seconds for one iteration, due to star-
tup/teardown costs; its recomputation takes 66 seconds.)

196

Skitter as the number of nodes changes. We configure half of the cluster to be Streamers

to send the graph. The performance is above 2 million edges per second per Agent and

scales well.

We next show how important having a dynamic system can be. For snapshot-based sys-

tems or partially dynamic systems, such as GraphX, the standard approach is to initialize

the iterative algorithm with prior outputs, re-initialize any new or changed vertices, and

run the iterative algorithm to convergence. If the new graph differs only slightly from the

prior graph, the number of iterations may be small, resulting in significant savings over re-

computing from scratch. This is the model used by many of the extensions to make GraphX

dynamic, e.g., Sprouter [2] and EdgeScaler [204]. A fully dynamic system, on the other

hand, can quickly change parts of the graph and only compute with vertices that are active,

closer to an asynchronous model. As our dynamic baseline, we completely ignore partition-

ing costs in GraphX and instead use the strategy above, re-initializing only changed vertices

and running WCC. By ignoring partitioning costs, we show the best achievable perfor-

mance if a perfect elastic load balancer is put into GraphX. In Figure 9.15, we show ElGA

inserting 100 batches into Twitter-2010. Even on single edge changes, our GraphX base-

line never took less than 49.45 seconds. Given ElGA’s minimum, average, and maximum

runtimes of 0.025, 0.12, and 0.59 seconds on single edge changes, we achieve speedups

between 83× to 1962×.

It is important to be able to scale both up and down as the graph size and rate of changes

varies. Our architecture is designed to support this. In Figure 9.16 we show the ratio of

edges that moved across ElGA when an Agent joins and a random one leaves for each

graph. This shows that ElGA can elastically scale as needed without incurring significant

overheads. In Figure 9.17, PageRank runs for five iterations on Gowalla starting with 16

nodes. After one iteration, an operator manually scales the cluster from 16 to 64 nodes.

ElGA elastically scales and continues the computation, improving the overall runtime. Fi-

nally, after the computation is over, the cluster is reduced back, providing cost savings.

197

0.00

0.03

0.06

0.09

Twitte
r−2010

Friendste
r

UK−2007−05

Email−EuAll x
 5k

Skitte
r x

 200

LiveJournal x 100

Amazon0601 x 2k

Gowalla x 10k

Patents x
 1k

Pokec x 1k

%
 o

f
E

d
g
es

Add

Rem

(a) The percent of edges moved when adding and then removing an Agent

0

2

4

6

8

Twitte
r−2010

Frie
ndste

r

UK−2007−05

Email−
EuAll x

 5k

Skitte
r x

 200

LiveJournal x 100

Amazon0601 x 2k

Gowalla x 10k

Patents x
 1k

Pokec x 1k

T
im

e
(s

ec
)

Add

Rem

(b) The total time to add and then remove a single Agent.

Figure 9.16: The cost of adding and removing one Agent, starting from 2048. Multiple
Agent changes amortize the cost.

1 2 3 4 5 6
Iteration

0
20
40
60
80

Ti
m

e
(se

c)

0

16

32

48

64

N
um

. N
od

es

Nodes Time Saved Elastic Scaling Comp.

Figure 9.17: PageRank running on Gowalla, manually scaled to 64 nodes during compu-
tation and then back to 16.

198

0

25000

50000

75000

100000

0

250

500

750

1000

0 1000 2000 3000

Time (sec)

L
o

ad
 (

q
/s

ec
)

A
g
en

ts
Target

ElGA

Load

EMA

Figure 9.18: Fully elastic autoscaling in ElGA. ElGA converges quickly to match the
autoscaling target (Target).

We next evaluate ElGA’s elasticity. We implemented a reactive autoscaler that takes

a fraction of the exponential moving average (EMA) of 30 seconds of client PageRank

vertex query rates to determine the target Agent count. It then waits for 60 seconds before

potentially scaling again to allow the EMA to stabilize. Any suitable autoscaler or scaling

measures can be used [124]. We varied client request rates with a step function to emulate

sudden workload changes on Skitter. The results are shown in Figure 9.18. ElGA quickly

converges to the autoscaler’s target, evidenced by the mostly overlapping blue and orange

lines, and hence elastically matches the load.

9.4 Temporal Support in ElGA

To enable temporal applications in ElGA, we added support for saving timestamps along-

side edges. When this option is enabled (CONFIG TEMPORAL), an edge becomes a three-

tuple (𝑎, 𝑏, 𝑡), where 𝑡 is a 64-bit timestamp. In ElGA without temporal support, edges are

stored first in an Abseil flat hash map, and second in a vector of vertices representing the

edge endpoints. There is a separate vector for in-edges and out-edges. The edges are not

sorted.

199

With temporal support, there are two additional vectors which hold timestamps and the

position in the vector corresponds to the position of the vertex endpoint. Any time an edge

(specifically, an edge change) is sent across the network, it needs to contain the timestamp

of the edge. When an algorithm wishes to use the timestamp of an edge, then it simply

accesses the in-times or out-times vector that corresponds to the neighbor, appropriately.

Note that the edges are not re-indexed based on time, which may be preferred for some

applications. That means that performing a time-specific query, for example finding edges

within a time range, requires an iteration over the edge list. This is similar to any algorithm

in ElGA that requires finding a specific vertex as a neighbor, as it needs to traverse the edge

list. Some systems will develop a specialized radix tree to support time, e.g., 𝐶-trees [59],

which could be applied as an optimization in ElGA depending on application needs.

9.5 ElGA’s Programming Interface

In this section we describe how to develop an application for use inside of ElGA.

ElGA was designed to support a variety of applications, however, ElGA needs to be

compiled for a specific algorithm. It further does not support multitenancy, authentication,

concurrent algorithm execution, attributes for vertices and edges, non-integral vertices, or

multiple graph namespaces. If ElGA is placed into a production environment it would like

be desirable for these to be engineered in.

9.5.1 Algorithm Structure

To create a new algorithm, first the build environment needs to be modified to pass in the

appropriate compile-time flag. For example, to run weakly connected components, the flag

CONFIG WCC is set. This flag is used to indicate which algorithm file to include, e.g.,

inside of algorithm.hpp the CONFIG WCC flag includes the wccalgorithm.hpp

file. This structure needs to be replicated for any new algorithm.

An algorithm has a single main function that is called for each vertex, following the

200

1 void init() { id = v; } // Initialize the local vertex state
2 void run() { // Process as a vertex
3 auto old_id = id;
4 for (auto r : replica_msgs) id = min(id, r);
5 for (auto n : neighbor_msgs) id = min(id, n);
6 if (old_id != id) broadcast_reps(id);
7 if (old_id != id) broadcast_neighs(id);
8 state = INACTIVE;
9 }

10 void set_active(msg) { // Runs when receiving message
11 if (msg < id) state = ACTIVE;
12 }

Figure 9.19: A high-level example of the weakly connected components algorithm within
ElGA.

vertex-centric model. There are a few boilerplate requirements around the main func-

tion, and one important decision for the algorithm: what model it follows. ElGA sup-

ports a full BSP model, an active (lightweight) BSP model, and a full (personalized) model

are supported. The algorithm decides this, again at compile time, by setting #define

CONFIG BSP, #define CONFIG LBSP, or #define CONFIG FULL. This determines

how the algorithm’s main run function (that is called per-vertex) will be executed. In BSP,

it will be executed each time. In the lightweight BSP, it will be executed if it is active, or

if its neighbor is active, and otherwise it will not be executed for a given vertex. In the

full model, it will be executed if its requirements are met (it is not waiting on any specific

messages from neighbors and it is active).

Any additional storage information used by the algorithm is set in its VertexStorage

class, which needs to be defined as part of the algorithm’s boilerplate. The neighbor and

replica messages also need to be set as classes in the boilerplate. This allows an algorithm

to specify exactly what it will be sending.

9.5.2 Vertex-Centric Function and Examples

The main function is called run. This function largely follows the standard vertex-

201

1 void init(d=infinity) { dist = d; } // Initialize
2 void run() { // Process as a vertex
3 auto old_dist = dist;
4 for (auto r : replica_msgs) dist = min(dist, r);
5 for (auto n : neighbor_msgs) dist = min(dist, n);
6 if (old_dist != dist) broadcast_reps(dist);
7 if (old_dist != dist) broadcast_neighs(dist+1);
8 state = INACTIVE;
9 }

10 void set_active(msg) { // Runs when receiving message
11 if (msg < dist) state = ACTIVE;
12 }

Figure 9.20: A high-level example of the breadth first search algorithm within ElGA.

centric model. For example in weakly connected components, the value cc, which stands

for connected component, is added to its VertexStorage. The high-level example code

is shown in Figure 9.19. All of the replica and neighbor messages also have a cc value.

Then, the run code simply reads through each replica and neighbor value, and at the

end decides to send out a message if its value changed based on the input values. The

mechanism for sending a message is to set the output parameter notify X, where X may

be in- or out-neighbors or replicas. In the case of weakly connected components, it sends

messages to replicas and neighbors at the same time.

In BFS, the run function acts similar to weakly connected components, but checks

whether the distance is lower and if so it remains active and broadcasts. The distance infor-

mation is part of the VertexStorage and included in all messages, as part of the BFS

algorithm boilerplate. A high-level example is shown in Figure 9.20. The only difference,

besides naming, between Figure 9.19 and Figure 9.20 is the initial values (in which BFS

supports a specific node being set to a value of 0, and all others default to ∞) and that the

messages sent out to neighbors increase the distance relative to the current vertex.

Note that algorithms can choose to only use in- or out-edges, which is not shown here

for clarity.

In label propagation, the broadcast occurs only if the most frequent label that was re-

202

ceived differs from the previous labels. Again, the label is included in VertexStorage

and neighbor and replica messages.

9.5.3 Lightweight BSP and the Full Model

In the case of lightweight BSP and the full model, the algorithm can set its state to INACTIVE

if it does not want to continue computation the next round. If all vertices are inactive, then

the computation will terminate.

For PageRank, the algorithm model differs from the previous examples, as it expects the

regular BSP model. This results in a few internal optimizations in ElGA as there is no need

to keep track of which vertices are active. Instead, only if all vertices state they should

be inactive will anything happen, namely the computation will terminate. In PageRank

the VertexStorage and messages all contain either a float or double, specified

at compile-time, to hold the current PageRank value. The run method simply adds up

neighbor values, shares the partial result with replicas, and then normalizes to achieve the

correct PageRank value.

In the case of the full model, the algorithm needs to be more precise about which

messages it is sending and which messages it requires before becoming active again. Any

message that is going to allow it to become active again needs to be set in the vn wait

data structure. This is a map of maps, that indicates the vertex is waiting on a specific

message (based on a key) from a specific neighbor (the next key in the maps).

9.6 Summary

As graphs continue to grow, many dynamic and large-scale graph algorithms, together with

distributed graph processing systems, have been developed. The majority of these efforts,

however, fail to consider the high variance from both the distributed graph’s natural rate of

change and the inherent variance in dynamic computations. We present ElGA, an elastic

and scalable dynamic graph analysis system. ElGA performs computation as the underly-

203

ing graph changes, and can scale as computational demands change. It accomplishes this

by combining a shared-nothing architecture with consistent hashing and, to handle heavily

skewed graphs, count-min sketches. We show that ElGA outperforms state-of-the-art graph

processing systems in terms of runtime on both static and dynamic graph algorithms over

variety of real world graphs and their scaled-up replicas.

204

CHAPTER 10

CONCLUSION AND FUTURE DIRECTIONS

10.1 Conclusion

In this dissertation, we focus on finding dense regions of massively changing graphs. Our

contributions are in three main areas.

First, we extend algorithms and theories surrounding dense regions on changing graphs

in three parts: unifying nuclei to cores, maintaining cores, and providing a new temporal

dense region called core chains. We provide the first dynamic maintenance algorithms for

nuclei, a computable yet effective dense region target. We do so by unifying all nuclei into

a standard target, 𝑘-cores, through the construction and use of a specific hypergraph. Our

nuclei maintenance algorithm is faster—over 90×—than specialized hand-crafted mainte-

nance algorithms for trusses, a specific type of nuclei. We then demonstrate that the 𝑘-core

dynamic graph approaches to date have largely focused on the density levels for vertices,

not on the dense regions themselves. We devise an index to maintain cores themselves for

both graphs and hypergraphs, which through our unifying framework apply to nuclei. Our

index supports dynamic graph batch updates through the use of a directed acyclic graph

made out of subcores. From this acyclic graph, we build and maintain the tree of dense

regions, capturing the hierarchy. Both of these algorithms are dynamic maintenance algo-

rithms, and so they return the most current output at any point in time. We then define a

new temporal dense region, which we call core chains, that link together regions of a dense

nuclei hierarchy over time. We show that core chains built with higher order nuclei are able

to effectively identify meaningful regions of changing graphs. Prior approaches fail to find

meaningful regions, whereas we identify ant behavior and research groups.

Second, we address scaling up on shared-memory systems in two parts: system level

205

improvements through a fast input and output library and parallel algorithms to maintain

cores on graphs and hypergraphs. When graphs become medium sized, it takes hours or

longer to perform operations on graphs with a single thread. We address a critical sys-

tems issue: parallel input and output. We provide the first known parallel graph-specific

input and output library, named PIGO. It supports reading edge lists, adjacency lists, and

other formats, such as tensors. We show that all known shared-memory graph systems

have large end-to-end runtime improvements with PIGO, up to 38×. We then develop the

first scalable and parallel 𝑘-core and hypergraph 𝑘-core batch-dynamic algorithms. We

provide two algorithms: one based on incrementing a large region, and then running ℎ-

indices iteratively to correct for over-incrementing, and the other that propagates a graph

change while iteratively computing ℎ-indices. Both algorithms scale well with insertions,

deletions, and mixed batches, achieving up to 13× speedup with 16 cores and more than

4× faster than prior algorithms. Together, these bring effective and useful dense region

tracking to medium sized graphs that fit in shared-memory systems.

Third, we scale out to support distributed-memory systems in two parts: a parallel

ℎ-index algorithm that enables core maintenance on distributed systems and an elastic,

dynamic, and scalable distributed-memory graph system. To bring dense region tracking

to distributed-memory systems, we develop the first parallel ℎ-index algorithm. We build

on the recursive nature of the problem and, taking linear passes with a continually reducing

subset of data, we find the ℎ-index in parallel. This enables our shared-memory 𝑘-core

and hypergraph 𝑘-core approaches to scale outwards, computing ℎ-indices with 3 trillion

integers in around 10 seconds. Large graphs require distributed-memory systems: even if

a compressed form can fit into a shared-memory system, in real-world deployments there

are typically thousands or more of concurrent clients performing queries or graph updates,

and furthermore the rate of change itself is highly variable. To efficiently support a highly

variable rate, we identify the need for elasticity in the graph systems. We develop the first

known elastic and dynamic graph system, ElGA. ElGA partitions edges using two layers of

206

consistent hashing, the first to identify a set of machines that hold all edges for the source

vertex, and the second to identify the specific machine that holds the edge in question. The

number of machines is set based on a sketch of the degree of the vertex, as directly storing

all vertex degrees does not scale. We show that ElGA is not only able to support dynamic

graphs and elastically scale, but it is also fast: its per-iteration runtimes beat state-of-the-

art static system competitors by over 2.4×, and against the more well supported dynamic

system, it brings improvements of up to 1962×.

Through these three areas, we bring dense region tracking to massive graphs.

10.2 Future Directions

There are many avenues for further exploration. We identify three exciting future direc-

tions here. The first direction is to explore approximate results. In many cases having

the exact result is not particularly useful. This is especially true in real-world graphs that

are continuously changing, as the real, underlying graph may never be known or may be

out-of-date by the time it reaches the graph system. There are many ways that nuclei can

be extended to support such approximate goals. One promising idea is to relax the strict

clique requirement for inclusion. For example, any approximately dense region could be

used as 𝑠-cliques, and any approximately dense subgraph inside of 𝑠-cliques could replace

𝑟-cliques. The connectivity constraint would remain. It is possible that this generalized nu-

cleus approach could provide around same insight as nuclei, but could be computed much

quicker, especially for graphs with large cliques.

The second direction is concerned with attributes and labels on graphs. In this work we

consider basic graphs: they are undirected, do not have multiedges, and have no weights or

attributes on either vertices or edges. This is a common starting place for graph analytics.

However, in many cases vertices and edges can be augmented with additional data, such

as direction and attributes, and multiple edges can simultaneously exist. This reflects real-

world data better. An important problem in graph analytics is to uncover techniques to use

207

this additional data to further improve the quality of results. There is a lot of potential in a

slightly extended graph framework, where vertices can exist on a spectrum (e.g., either red,

or blue, or somewhere in-between). This extended framework has natural applications in

environments such as disinformation and computer security. Understanding what a dense

region is in this space, and determining how to effectively compute and use them, is an

interesting and valuable problem.

The third direction is to explore further and deeper temporal behaviors. This is an

increasingly important goal in graph analysis. Many graphs change over time, and it is

important to develop algorithms that can keep up with the continuous changes to the graph.

However, simply keeping up throws away an interesting dimension, time. In this work we

developed one effective temporal dense region, core chains. However, temporal analysis

in general remains a largely untouched space, with numerous opportunities throughout.

Exciting future work includes systems work to develop different strategies for querying

historical edges, algorithms work to develop further strategies for understanding graphs as

they change over time, and extending both approximate graph algorithms and attributed

graphs to the temporal setting.

208

REFERENCES

[1] Z. Abbas, V. Kalavri, P. Carbone, and V. Vlassov, “Streaming graph partitioning:
An experimental study,” Proceedings of the VLDB Endowment, vol. 11, no. 11,
pp. 1590–1603, 2018.

[2] T. Abughofa and F. Zulkernine, “Sprouter: Dynamic graph processing over data
streams at scale,” in International Conference on Database and Expert Systems
Applications, Springer, 2018, pp. 321–328.

[3] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala, “Parallel batch-dynamic
graph connectivity,” in The 31st ACM Symposium on Parallelism in Algorithms and
Architectures, 2019, pp. 381–392.

[4] C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin, “On dense pattern mining in graph
streams,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 975–984, 2010.

[5] K. J. Ahn, S. Guha, and A. McGregor, “Graph sketches: Sparsification, spanners,
and subgraphs,” in Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI sympo-
sium on Principles of Database Systems, 2012, pp. 5–14.

[6] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, and Ö. Ulusoy, “Distributed 𝑘-
Core View Materialization and Maintenance for Large Dynamic Graphs,” IEEE
Transactions on Knowledge and Data Engineering, vol. 26, no. 10, pp. 2439–2452,
2014.

[7] S. Alonso, F. J. Cabrerizo, E. Herrera-Viedma, and F. Herrera, “H-index: A re-
view focused in its variants, computation and standardization for different scientific
fields,” Journal of Informetrics, vol. 3, no. 4, pp. 273–289, 2009.

[8] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K. Zadeck, “Incremental
Evaluation of Computational Circuits,” in Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, ser. SODA ’90, San Francisco, Califor-
nia, USA: Society for Industrial and Applied Mathematics, 1990, pp. 32–42.

[9] I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “K-core decom-
position: A tool for the analysis of large scale internet graphs,” arXiv preprint
cs.NI/0511007, 2005.

[10] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “Large scale
networks fingerprinting and visualization using the k-core decomposition,” in Ad-
vances in neural information processing systems, 2006, pp. 41–50.

209

[11] K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar, “Distributed evaluation of
subgraph queries using worst-case optimal low-memory dataflows,” Proceedings
of the VLDB Endowment, vol. 11, no. 6, pp. 691–704, 2018.

[12] K. Ammar and M. T. Özsu, “Experimental analysis of distributed graph systems,”
Proceedings of the VLDB Endowment, vol. 11, no. 10, pp. 1151–1164, 2018.

[13] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava, “Dense subgraph maintenance
under streaming edge weight updates for real-time story identification,” Proceed-
ings of the VLDB Endowment, vol. 5, no. 6, pp. 574–585, 2012.

[14] S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis, “Distributed k-core de-
composition and maintenance in large dynamic graphs,” in Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems, 2016,
pp. 161–168.

[15] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al., “A view of cloud computing,” Communi-
cations of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[16] S. Asur, S. Parthasarathy, and D. Ucar, “An Event-Based Framework for Charac-
terizing the Evolutionary Behavior of Interaction Graphs,” in Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining - KDD ’07, ser. KDD ’07, San Jose, California, USA: ACM Press, 2007,
pp. 913–921.

[17] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, “Group formation in
large social networks: Membership, growth, and evolution,” in Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2006, pp. 44–54.

[18] W. Bai, Y. Chen, and D. Wu, “Efficient temporal core maintenance of massive
graphs,” Information Sciences, vol. 513, pp. 324–340, 2020.

[19] W. Bai, Y. Zhang, X. Liu, M. Chen, and D. Wu, “Efficient Core Maintenance of
Dynamic Graphs,” in International Conference on Database Systems for Advanced
Applications, Springer, 2020, pp. 658–665.

[20] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo, “Efficient and effective com-
munity search,” Data mining and knowledge discovery, vol. 29, no. 5, pp. 1406–
1433, 2015.

[21] J. A. Barnes, “Graph Theory and Social Networks: A Technical Comment on Con-
nectedness and Connectivity,” Sociology, vol. 3, no. 2, pp. 215–232, 1969.

210

[22] S. Béal, S. Ferrières, E. Rémila, and P. Solal, “An axiomatization of the iterated
h-index and applications to sport rankings,” 2016.

[23] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark Suite,” 2015.

[24] C. Belth, X. Zheng, and D. Koutra, “Mining persistent activity in continually evolv-
ing networks,” in Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020, pp. 934–944.

[25] J. L. Bentley, D. Haken, and J. B. Saxe, “A general method for solving divide-and-
conquer recurrences,” SIGACT News, vol. 12, no. 3, pp. 36–44, 1980.

[26] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler, “Practice of Stream-
ing Processing of Dynamic Graphs: Concepts, Models, and Systems,” 2019.

[27] M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels, G.
Alonso, and T. Hoefler, “Demystifying Graph Databases: Analysis and Taxonomy
of Data Organization, System Designs, and Graph Queries,” 2019.

[28] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma, “Preventing
unraveling in social networks: The anchored k-core problem,” SIAM Journal on
Discrete Mathematics, vol. 29, no. 3, pp. 1452–1475, 2015.

[29] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of statistical mechanics: theory and
experiment, vol. 2008, no. 10, P10008, 2008.

[30] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time bounds for
selection,” J. Comput. Syst. Sci., vol. 7, no. 4, pp. 448–461, 1973.

[31] P. Bogdanov, M. Mongiovi, and A. K. Singh, “Mining Heavy Subgraphs in Time-
Evolving Networks,” in 2011 IEEE 11th International Conference on Data Mining,
IEEE, 2011, pp. 81–90.

[32] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression Techniques,” in
Proceedings of the 13th Conference on World Wide Web, Manhattan, USA: ACM
Press, 2004, pp. 595–601.

[33] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable fully dis-
tributed web crawler,” Software: Practice and Experience, vol. 34, no. 8, pp. 711–
726, 2004.

[34] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered Label Propagation: A Mul-
tiResolution Coordinate-Free Ordering for Compressing Social Networks,” in Pro-
ceedings of the 20th International Conference on World wide web, S. Srinivasan,

211

K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, Eds., ACM
Press, 2011, pp. 587–596.

[35] L. Bornmann, R. Mutz, S. E. Hug, and H.-D. Daniel, “A multilevel meta-analysis
of studies reporting correlations between the h index and 37 different h index vari-
ants,” Journal of Informetrics, vol. 5, no. 3, pp. 346–359, 2011.

[36] D. Borthakur et al., “Hdfs architecture guide,” Hadoop Apache Project, vol. 53,
no. 1-13, p. 2, 2008.

[37] U. Brandes, P. Kenis, J. Lerner, and D. van Raaij, “Network analysis of collabora-
tion structure in Wikipedia,” in Proceedings of the 18th International Conference
on World wide web - WWW 09, ACM Press, 2009, pp. 731–740.

[38] A. Z. Broder, A. M. Frieze, and E. Upfal, “On the satisfiability and maximum
satisfiability of random 3-cnf formulas.,” in SODA, vol. 93, 1993, pp. 322–330.

[39] M. Brunato, H. H. Hoos, and R. Battiti, “On Effectively Finding Maximal Quasi-
cliques in Graphs,” in International Conference on learning and intelligent opti-
mization, Springer, 2008, pp. 41–55.

[40] C. Buragohain, K. M. Risvik, P. Brett, M. Castro, W. Cho, J. Cowhig, N. Gloy,
K. Kalyanaraman, R. Khanna, J. Pao, et al., “A1: A distributed in-memory graph
database,” in Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020, pp. 329–344.

[41] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,
“Apache flink: Stream and batch processing in a single engine,” Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 36, no. 4,
2015.

[42] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for graph
mining,” in Proceedings of the 2004 SIAM International Conference on Data Min-
ing, SIAM, 2004, pp. 442–446.

[43] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data
streams,” in International Colloquium on Automata, Languages, and Program-
ming, Springer, 2002, pp. 693–703.

[44] N. Chatterjee and S. Sinha, “Understanding the mind of a worm: Hierarchical net-
work structure underlying nervous system function in c. elegans,” Progress in brain
research, vol. 168, pp. 145–153, 2007.

212

[45] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The bloomier filter: An efficient
data structure for static support lookup tables,” in Proceedings of the fifteenth an-
nual ACM-SIAM symposium on Discrete algorithms, Citeseer, 2004, pp. 30–39.

[46] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou, F.
Zhao, and E. Chen, “Kineograph: Taking the pulse of a fast-changing and connected
world,” in Proceedings of the 7th ACM european conference on Computer Systems,
2012, pp. 85–98.

[47] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User movement in
location-based social networks,” in Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2011, pp. 1082–
1090.

[48] L. Chu, Y. Zhang, Y. Yang, L. Wang, and J. Pei, “Online density bursting subgraph
detection from temporal graphs,” Proceedings of the VLDB Endowment, vol. 12,
no. 13, pp. 2353–2365, 2019.

[49] M. Ciaperoni, E. Galimberti, F. Bonchi, C. Cattuto, F. Gullo, and A. Barrat, “Rel-
evance of temporal cores for epidemic spread in temporal networks,” Scientific re-
ports, vol. 10, no. 1, pp. 1–15, 2020.

[50] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,” National se-
curity agency technical report, vol. 16, pp. 3–1, 2008.

[51] G. Cormode and S. Muthukrishnan, “An improved data stream summary: The
count-min sketch and its applications,” Journal of Algorithms, vol. 55, no. 1, pp. 58–
75, Apr. 2005.

[52] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of overlapping com-
munities,” in Proceedings of the 2013 ACM SIGMOD International Conference on
Management of data, ACM, 2013, pp. 277–288.

[53] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities in large
graphs,” in Proceedings of the 2014 ACM SIGMOD International Conference on
Management of data, 2014, pp. 991–1002.

[54] J. Dai, Y. Li, X. Fan, J. Sun, and Y. Zhao, “Finding Early Bursting Cohesive Sub-
graphs in Large Temporal Networks,” in 2021 IEEE SmartWorld, Ubiquitous In-
telligence & Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Internet of People and Smart City Innovation (SmartWorld/S-
CALCOM/UIC/ATC/IOP/SCI), IEEE, Oct. 2021.

[55] A. Das, M. Svendsen, and S. Tirthapura, “Incremental maintenance of maximal
cliques in a dynamic graph,” The VLDB Journal, vol. 28, no. 3, pp. 351–375, 2019.

213

[56] N. S. Dasari, R. Desh, and M. Zubair, “ParK: An efficient algorithm for k-core
decomposition on multicore processors,” in 2014 IEEE International Conference
on Big Data (Big Data), IEEE, IEEE, Oct. 2014, pp. 9–16.

[57] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly Avail-
able Key-Value Store,” ACM SIGOPS operating systems review, vol. 41, no. 6,
pp. 205–220, 2007.

[58] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for parallel graph
algorithms using work-efficient bucketing,” in Proceedings of the 29th ACM Sym-
posium on Parallelism in Algorithms and Architectures, 2017, pp. 293–304.

[59] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency graph streaming using
compressed purely-functional trees,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI
2019, Phoenix, AZ, USA: ACM, Jun. 2019, pp. 918–934.

[60] L. Dhulipala, D. Durfee, J. Kulkarni, R. Peng, S. Sawlani, and X. Sun, “Paral-
lel batch-dynamic graphs: Algorithms and lower bounds,” in Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2020,
pp. 1300–1319.

[61] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in cloud com-
puting: State of the art and research challenges,” IEEE Transactions on Services
Computing, vol. 11, no. 2, pp. 430–447, 2017.

[62] D. Ding, H. Li, Z. Huang, and N. Mamoulis, “Efficient fault-tolerant group recom-
mendation using alpha-beta-core,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, 2017, pp. 2047–2050.

[63] J. R. Douceur, “The sybil attack,” in International Workshop on Peer-to-Peer Sys-
tems, Springer, 2002, pp. 251–260.

[64] Y. Dourisboure, F. Geraci, and M. Pellegrini, “Extraction and classification of dense
communities in the web,” in Proceedings of the 16th International Conference on
World Wide Web, ACM, 2007, pp. 461–470.

[65] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “Farm: Fast remote mem-
ory,” in 11th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 14), 2014, pp. 401–414.

[66] ECMA, “Data interchange on 12,7 mm 48-track magnetic tape cartridges - DLT1
format,” Tech. Rep., 1993.

214

[67] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High performance data
structure for streaming graphs,” in 2012 IEEE Conference on High Performance
Extreme Computing, IEEE, 2012, pp. 1–5.

[68] L. Egghe and R. Rousseau, “A geometric relation between the h-index and the
lorenz curve,” Scientometrics, vol. 119, no. 2, pp. 1281–1284, 2019.

[69] ——, “Solution by step functions of a minimum problem in L2[0,T], using gener-
alized h- and g-indices,” Journal of Informetrics, vol. 13, no. 3, pp. 785–792, Aug.
2019.

[70] ——, “The h-index formalism,” Scientometrics, vol. 126, no. 7, pp. 6137–6145,
2021.

[71] M. Eidsaa and E. Almaas, “𝑠-core network decomposition: A generalization of 𝑘-
core analysis to weighted networks,” Phys. Rev. E, vol. 88, p. 062 819, 6 Dec. 2013.

[72] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, “Sparsification—a tech-
nique for speeding up dynamic graph algorithms,” Journal of the ACM (JACM),
vol. 44, no. 5, pp. 669–696, Sep. 1997.

[73] B. Erb, D. Meißner, F. Kargl, B. A. Steer, F. Cuadrado, D. Margan, and P. Piet-
zuch, “Graphtides: A framework for evaluating stream-based graph processing plat-
forms,” in Proceedings of the 1st ACM SIGMOD joint International Workshop on
graph data management experiences & systems (GRADES) and network data ana-
lytics (NDA), 2018, pp. 1–10.

[74] B. Erb, D. Meissner, J. Pietron, and F. Kargl, “Chronograph: A distributed pro-
cessing platform for online and batch computations on event-sourced graphs,” in
Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems, 2017, pp. 78–87.

[75] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat, M.-D.
Pham, and P. Boncz, “The ldbc social network benchmark: Interactive workload,”
in Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, 2015, pp. 619–630.

[76] W. Fan, C. Hu, M. Liu, P. Lu, Q. Yin, and J. Zhou, “Dynamic scaling for par-
allel graph computations,” Proceedings of the VLDB Endowment, vol. 12, no. 8,
pp. 877–890, 2019.

[77] W. Fan, C. Hu, and C. Tian, “Incremental graph computations: Doable and un-
doable,” in Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, ACM, 2017, pp. 155–169.

215

[78] W. Fan, P. Lu, W. Yu, J. Xu, Q. Yin, X. Luo, J. Zhou, and R. Jin, “Adaptive asyn-
chronous parallelization of graph algorithms,” ACM Transactions on Database Sys-
tems (TODS), vol. 45, no. 2, pp. 1–45, 2020.

[79] W. Fan, W. Yu, J. Xu, J. Zhou, X. Luo, Q. Yin, P. Lu, Y. Cao, and R. Xu, “Paral-
lelizing sequential graph computations,” ACM Transactions on Database Systems
(TODS), vol. 43, no. 4, pp. 1–39, 2018.

[80] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu, “Effective and efficient attributed
community search,” The VLDB Journal, vol. 26, no. 6, pp. 803–828, 2017.

[81] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin, “A survey
of community search over big graphs,” The VLDB Journal, vol. 29, no. 1, pp. 353–
392, 2020.

[82] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao, “Effective and efficient community
search over large heterogeneous information networks,” Proceedings of the VLDB
Endowment, vol. 13, no. 6, pp. 854–867, 2020.

[83] G. Feng, Z. Ma, D. Li, X. Zhu, Y. Cai, W. Han, and W. Chen, “Risgraph: A real-time
streaming system for evolving graphs,” arXiv preprint arXiv:2004.00803, 2020.

[84] A. Fidel, N. M. Amato, L. Rauchwerger, et al., “Kla: A new algorithmic paradigm
for parallel graph computations,” in 2014 23rd International Conference on Paral-
lel Architecture and Compilation Techniques (PACT), IEEE, 2014, pp. 27–38.

[85] H. A. Filho, J. Machicao, and O. M. Bruno, “A hierarchical model of metabolic
machinery based on the k core decomposition of plant metabolic networks,” PloS
one, vol. 13, no. 5, e0195843, 2018.

[86] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3-5,
pp. 75–174, Feb. 2010.

[87] S. Fortunato and D. Hric, “Community detection in networks: A user guide,” Physics
Reports, vol. 659, pp. 1–44, Nov. 2016.

[88] E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou, “MotifCut: Regulatory
motifs finding with maximum density subgraphs,” Bioinformatics, vol. 22, no. 14,
e150–e157, 2006.

[89] K. Gabert and Ü. V. Çatalyürek, “PIGO: A Parallel Graph Input/Output Library,”
in 2021 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), Workshop on Graphs, Architectures, Programming, and Learn-
ing (GrAPL), IEEE, May 2021.

216

[90] K. Gabert, A. Pınar, and Ü. V. Çatalyürek, “A Unifying Framework to Identify
Dense Subgraphs on Streams: Graph Nuclei to Hypergraph Cores,” in Proceed-
ings of the 14th ACM International Conference on Web Search and Data Mining
(WSDM), ser. WSDM 21, Virtual Event, Israel: ACM, Mar. 2021, pp. 689–697.

[91] ——, “Shared-Memory Scalable k-Core Maintenance on Dynamic Graphs and Hy-
pergraphs,” in 2021 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), Workshop on Parallel and Distributed Processing
for Computational Social Systems (ParSocial), IEEE, May 2021, pp. 998–1007.

[92] ——, “Batch Dynamic Algorithm to Find k-Cores and Hierarchies,” ArXiv, Tech.
Rep. arXiv:2203.13095, Mar. 2022.

[93] K. Gabert, K. Sancak, M. Y. Özkaya, A. Pınar, and Ü. V. Çatalyürek, “ElGA: Elas-
tic and Scalable Dynamic Graph Analysis,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
ACM, Nov. 2021.

[94] K. G. Gabert and A. Pinar, “Extracting Stable Community Information on Rela-
tional Data,” in Conference on Data Analysis (CoDA), Feb. 2020.

[95] E. Galimberti, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo, “Mining (maximal)
Span-cores from Temporal Networks,” in Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge Management, 2018, pp. 107–
116.

[96] E. Galimberti, F. Bonchi, F. Gullo, and T. Lanciano, “Core Decomposition in Multi-
layer Networks, Theory, algorithms, and applications,” ACM Transactions on Knowl-
edge Discovery from Data, vol. 14, no. 1, pp. 1–40, Feb. 2020.

[97] E. Galimberti, M. Ciaperoni, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo, “Span-
Core Decomposition for Temporal Networks: Algorithms and Applications,” ACM
Trans. Knowl. Discov. Data, vol. 15, no. 1, Dec. 2020.

[98] L. Gao, G. Gao, D. Ma, and L. Xu, “Coreness variation rule and fast updating
algorithm for dynamic networks,” Symmetry, vol. 11, no. 4, p. 477, 2019.

[99] J. Garcı́a-Algarra, J. M. Pastor, J. M. Iriondo, and J. Galeano, “Ranking of criti-
cal species to preserve the functionality of mutualistic networks using the k-core
decomposition,” PeerJ, vol. 5, e3321, 2017.

[100] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud comput-
ing services,” Future Generation Computer Systems, vol. 29, no. 4, pp. 1012–1023,
2013.

217

[101] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu, “Elastic scaling for data stream
processing,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1447–1463, 2013.

[102] P. B. Gibbons and Y. Matias, “Synopsis data structures for massive data sets,” Ex-
ternal memory algorithms, vol. 50, pp. 39–70, 1999.

[103] D. Gibson, R. Kumar, and A. Tomkins, “Discovering Large Dense Subgraphs in
Massive Graphs,” in Proceedings of the 31st International Conference on Very
Large Data Bases, ser. VLDB ’05, Trondheim, Norway: VLDB Endowment, 2005,
pp. 721–732.

[104] A. V. Goldberg, Finding a maximum density subgraph. University of California
Berkeley, 1984.

[105] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica,
“Graphx: Graph processing in a distributed dataflow framework,” in 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), 2014,
pp. 599–613.

[106] M. T. Goodrich and M. Mitzenmacher, “Invertible bloom lookup tables,” in 49th
Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), IEEE, Sep. 2011, pp. 792–799.

[107] Google programming contest, 2002.

[108] D. Greene, D. Doyle, and P. Cunningham, “Tracking the Evolution of Communities
in Dynamic Social Networks,” in 2010 International Conference on Advances in
Social Networks Analysis and Mining, IEEE, Aug. 2010, pp. 176–183.

[109] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and
O. Sporns, “Mapping the structural core of human cerebral cortex,” PLoS Biol,
vol. 6, no. 7, e159, 2008.

[110] M. Han and K. Daudjee, “Giraph unchained: Barrierless asynchronous parallel exe-
cution in pregel-like graph processing systems,” Proceedings of the VLDB Endow-
ment, vol. 8, no. 9, pp. 950–961, 2015.

[111] S. Heidari and R. Buyya, “A Cost-Efficient Auto-Scaling Algorithm for Large-
Scale Graph Processing in Cloud Environments with Heterogeneous Resources,”
IEEE Transactions on Software Engineering, vol. 47, no. 8, pp. 1729–1741, Aug.
2019.

[112] S. Heidari, R. N. Calheiros, and R. Buyya, “Igiraph: A cost-efficient framework for
processing large-scale graphs on public clouds,” in 2016 16th IEEE/ACM Interna-

218

tional Symposium on Cluster, Cloud and Grid Computing (CCGrid), IEEE, 2016,
pp. 301–310.

[113] S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, “Scalable graph processing
frameworks: A taxonomy and open challenges,” ACM Computing Surveys (CSUR),
vol. 51, no. 3, pp. 1–53, 2018.

[114] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud computing: What it
is, and what it is not,” in 10th International Conference on Autonomic Computing
(ICAC 13), 2013, pp. 23–27.

[115] P. Hintjens, ZeroMQ: messaging for many applications. 2013.

[116] J. E. Hirsch, “An index to quantify an individual’s scientific research output,” Pro-
ceedings of the National Academy of Sciences, vol. 102, no. 46, pp. 16 569–16 572,
2005.

[117] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage, G. M.
Voelker, and D. Wagner, “Detecting and characterizing lateral phishing at scale,” in
28th USENIX Security Symposium (USENIX Security 19), 2019, pp. 1273–1290.

[118] P. Holme and J. Saramäki, “Temporal networks,” Physics Reports, vol. 519, no. 3,
pp. 97–125, Oct. 2012.

[119] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking evolving communities in
large linked networks,” Proceedings of the National Academy of Sciences, vol. 101,
no. suppl 1, pp. 5249–5253, Apr. 2004.

[120] R. Hovden, “Bibliometrics for Internet media: Applying the h-index to You Tube,”
Journal of the American Society for Information Science and Technology, vol. 64,
no. 11, pp. 2326–2331, 2013.

[121] Q.-S. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen, “Faster
parallel core maintenance algorithms in dynamic graphs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 6, pp. 1287–1300, 2019.

[122] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss community
in large and dynamic graphs,” in Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of data, ACM, 2014, pp. 1311–1322.

[123] W.-C. Hung and C.-Y. Tseng, “Maximum (L, K)-Lasting Cores in Temporal So-
cial Networks,” in International Conference on Database Systems for Advanced
Applications, Springer, 2021, pp. 336–352.

219

[124] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit, D. Epema,
and A. Iosup, “An experimental performance evaluation of autoscaling policies
for complex workflows,” in Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, 2017, pp. 75–86.

[125] A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Manhardto, H.
Chafio, M. Capotă, N. Sundaram, M. Anderson, I. G. Tănase, Y. Xia, L. Nai, and P.
Boncz, “LDBC graphalytics, A benchmark for large-scale graph analysis on paral-
lel and distributed platforms,” Proceedings of the VLDB Endowment, vol. 9, no. 13,
pp. 1317–1328, Sep. 2016.

[126] A. Iyer, L. E. Li, and I. Stoica, “Celliq: Real-time cellular network analytics at
scale,” in 12th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15), 2015, pp. 309–322.

[127] A. P. Iyer, L. E. Li, T. Das, and I. Stoica, “Time-evolving graph processing at scale,”
in Proceedings of the Fourth International Workshop on Graph Data Management
Experiences and Systems, 2016, pp. 1–6.

[128] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica, “ASAP:
Fast, approximate graph pattern mining at scale,” in Proceedings of the 13th USENIX
conference on Operating Systems Design and Implementation, 2018, pp. 745–761.

[129] A. P. Iyer, A. Panda, M. Chowdhury, A. Akella, S. Shenker, and I. Stoica, “Monarch:
Gaining command on geo-distributed graph analytics,” in 10th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 18), 2018.

[130] V. Jethava and N. Beerenwinkel, “Finding Dense Subgraphs in Relational Graphs,”
in Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, Springer, 2015, pp. 641–654.

[131] H. Jin, N. Wang, D. Yu, Q.-S. Hua, X. Shi, and X. Xie, “Core maintenance in
dynamic graphs: A parallel approach based on matching,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 11, pp. 2416–2428, 2018.

[132] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: A high-compression indexing
scheme for reachability query,” in Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of data, ACM, 2009, pp. 813–826.

[133] M. Jung, “Openexpress: Fully hardware automated open research framework for
future fast nvme devices,” in Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference. USA: USENIX Association, 2020.

220

[134] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal distributed
hash table,” in International Workshop on Peer-to-Peer Systems, Springer, 2003,
pp. 98–107.

[135] H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore platforms,”
in 2017 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), IEEE, 2017, pp. 1482–1491.

[136] B. Kahveci and B. Gedik, “Joker: Elastic stream processing with organic adapta-
tion,” Journal of Parallel and Distributed Computing, vol. 137, pp. 205–223, 2020.

[137] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, “Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web,” in Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, 1997, pp. 654–663.

[138] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of com-
puter computations, Springer, 1972, pp. 85–103.

[139] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robinett, and S.
Samsi, “Sparse deep neural network graph challenge,” in 2019 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), IEEE, 2019, pp. 1–7.

[140] A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and I. Stoica, “Zipg: A memory-
efficient graph store for interactive queries,” in Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, 2017, pp. 1149–1164.

[141] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and
H. A. Makse, “Identification of influential spreaders in complex networks,” Nature
physics, vol. 6, no. 11, pp. 888–893, 2010.

[142] T. Klingberg and R. Manfredi, Gnutella 0.6, 2002.

[143] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Henderson,
Y. Hu, and R. Sandstrom, “The SuiteSparse matrix collection website interface,”
Journal of Open Source Software, vol. 4, no. 35, p. 1244, 2019.

[144] Y.-X. Kong, G.-Y. Shi, R.-J. Wu, and Y.-C. Zhang, “K-core: Theories and applica-
tions,” Physics Reports, vol. 832, pp. 1–32, 2019.

[145] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 388, no. 6, pp. 1007–1023, 2009.

221

[146] P. Kumar and H. H. Huang, “Graphone: A data store for real-time analytics on
evolving graphs,” in 17th USENIX Conference on File and Storage Technologies
(FAST 19), 2019, pp. 249–263.

[147] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins, and E. Upfal,
“The web as a graph,” in Proceedings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, 2000, pp. 1–10.

[148] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling the Web for
emerging cyber-communities,” Computer networks, vol. 31, no. 11-16, pp. 1481–
1493, 1999.

[149] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Subrahmanian,
“Rev2: Fraudulent user prediction in rating platforms,” in Proceedings of the Eleventh
ACM International Conference on Web Search and Data Mining, ACM, 2018,
pp. 333–341.

[150] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge weight pre-
diction in weighted signed networks,” in Data Mining (ICDM), 2016 IEEE 16th
International Conference on, IEEE, 2016, pp. 221–230.

[151] J. Kunegis, “KONECT, The koblenz network collection,” in Proceedings of the
22nd International Conference on World Wide Web Companion, ACM, ACM Press,
2013, pp. 1343–1350.

[152] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social network or a
news media?” In Proceedings of the 19th International Conference on World wide
web, ACM Press, 2010, pp. 591–600.

[153] M. Lahiri and T. Y. Berger-Wolf, “Mining Periodic Behavior in Dynamic Social
Networks,” in 2008 Eighth IEEE International Conference on Data Mining, IEEE,
2008, pp. 373–382.

[154] M. M. Lee, I. Roy, A. AuYoung, V. Talwar, K. Jayaram, and Y. Zhou, “Views
and transactional storage for large graphs,” in ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open Distributed Processing,
Springer, 2013, pp. 287–306.

[155] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal, “A survey of algorithms for dense sub-
graph discovery,” in Managing and Mining Graph Data, Springer, 2010, pp. 303–
336.

[156] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of viral market-
ing,” ACM Transactions on the Web (TWEB), vol. 1, no. 1, 5–es, 2007.

222

[157] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2006, pp. 631–636.

[158] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Densification laws,
shrinking diameters and possible explanations,” in Proceedings of the eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Min-
ing, 2005, pp. 177–187.

[159] ——, “Graph evolution: Densification and shrinking diameters,” ACM transactions
on Knowledge Discovery from Data (TKDD), vol. 1, no. 1, 2–es, 2007.

[160] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collec-
tion, http://snap.stanford.edu/data, Jun. 2014.

[161] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community struc-
ture in large networks: Natural cluster sizes and the absence of large well-defined
clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123, 2009.

[162] M. Ley, “The DBLP Computer Science Bibliography: Evolution, Research Issues,
Perspectives,” in String Processing and Information Retrieval, Springer, Springer
Berlin Heidelberg, 2002, pp. 1–10.

[163] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent Community Search in
Temporal Networks,” in 2018 IEEE 34th International Conference on Data Engi-
neering (ICDE), IEEE, 2018, pp. 797–808.

[164] R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large dynamic
graphs,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 10,
pp. 2453–2465, 2013.

[165] Y. Li, J. Liu, H. Zhao, J. Sun, Y. Zhao, and G. Wang, “Efficient continual cohe-
sive subgraph search in large temporal graphs,” World Wide Web, vol. 24, no. 5,
pp. 1483–1509, 2021.

[166] L. Lin, P. Yuan, R.-H. Li, J. Wang, L. Liu, and H. Jin, “Mining Stable Quasi-Cliques
on Temporal Networks,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, pp. 1–15, 2021.

[167] L. Lin, P. Yuan, R. Li, and H. Jin, “Mining Diversified Top-r Lasting Cohesive
Subgraphs on Temporal Networks,” IEEE Transactions on Big Data, pp. 1–1, 2021.

[168] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “FacetNet: A Framework
for Analyzing Communities and Their Evolutions in Dynamic Networks,” in Pro-

223

http://snap.stanford.edu/data

ceeding of the 17th International Conference on World Wide Web, New York, NY,
USA: ACM Press, 2008, pp. 685–694.

[169] Z. Lin, F. Zhang, X. Lin, W. Zhang, and Z. Tian, “Hierarchical core maintenance
on large dynamic graphs,” Proceedings of the VLDB Endowment, vol. 14, no. 5,
pp. 757–770, 2021.

[170] Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang, “Global reinforcement of
social networks: The anchored coreness problem,” in Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020, pp. 2211–2226.

[171] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (𝛼, 𝛽)-core
computation: An index-based approach,” in The World Wide Web Conference, 2019,
pp. 1130–1141.

[172] X. Liu, T. Ge, and Y. Wu, “Finding densest lasting subgraphs in dynamic graphs:
A stochastic approach,” in 2019 IEEE 35th International Conference on Data En-
gineering (ICDE), IEEE, 2019, pp. 782–793.

[173] ——, “A Stochastic Approach to Finding Densest Temporal Subgraphs in Dynamic
Graphs,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2020.

[174] L. Lü, T. Zhou, Q.-M. Zhang, and H. E. Stanley, “The H-index of a network node
and its relation to degree and coreness,” Nature Communications, vol. 7, no. 1,
p. 10 168, Jan. 2016.

[175] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Efficient
erasure correcting codes,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 569–584, 2001.

[176] Q. Luo, D. Yu, X. Cheng, Z. Cai, J. Yu, and W. Lv, “Batch Processing for Truss
Maintenance in Large Dynamic Graphs,” IEEE Transactions on Computational So-
cial Systems, 2020.

[177] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast Computation of Dense Temporal
Subgraphs,” in 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), IEEE, 2017, pp. 361–372.

[178] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama: Efficient graph
analytics using large multiversioned arrays,” in 2015 IEEE 31st International Con-
ference on Data Engineering, IEEE, 2015, pp. 363–374.

[179] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.
Czajkowski, “Pregel: A system for large-scale graph processing,” in Proceedings of

224

the 2010 ACM SIGMOD International Conference on Management of data, 2010,
pp. 135–146.

[180] F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis, “The core
decomposition of networks: Theory, algorithms and applications,” The VLDB Jour-
nal, vol. 29, no. 1, pp. 61–92, Jan. 2020.

[181] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier, “The
new ext4 filesystem: Current status and future plans,” in Proceedings of the Linux
symposium, Citeseer, vol. 2, 2007, pp. 21–33.

[182] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira, and C.
Yang, “Lagraph: A community effort to collect graph algorithms built on top of
the graphblas,” in 2019 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), IEEE, 2019, pp. 276–284.

[183] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and graph
coloring algorithms,” Journal of the ACM (JACM), vol. 30, no. 3, pp. 417–427,
1983.

[184] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: A survey
of vertex-centric frameworks for large-scale distributed graph processing,” ACM
Computing Surveys (CSUR), vol. 48, no. 2, pp. 1–39, 2015.

[185] A. F. McDaid, D. Greene, and N. Hurley, “Normalized mutual information to eval-
uate overlapping community finding algorithms,” arXiv preprint arXiv:1110.2515,
2011.

[186] A. McGregor, “Graph stream algorithms, A survey,” ACM SIGMOD Record, vol. 43,
no. 1, pp. 9–20, May 2014.

[187] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at what COST?” In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[188] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard, “Differential Dataflow,” in
CIDR, 2013.

[189] P. Mell, T. Grance, et al., “The NIST definition of cloud computing,” 2011.

[190] D. P. Mersch, A. Crespi, and L. Keller, “Tracking Individuals Shows Spatial Fi-
delity Is a Key Regulator of Ant Social Organization,” Science, vol. 340, no. 6136,
pp. 1090–1093, May 2013.

[191] A. E. Mislove, “Online social networks: Measurement, analysis, and applications
to distributed information systems,” Ph.D. dissertation, 2009.

225

[192] M. Mitzenmacher and G. Varghese, “Biff (Bloom filter) codes: Fast error correction
for large data sets,” in 2012 IEEE International Symposium on Information Theory
Proceedings, IEEE, 2012, pp. 483–487.

[193] R. J. Mokken et al., “Cliques, clubs and clans,” Quality & Quantity, vol. 13, no. 2,
pp. 161–173, 1979.

[194] M. Molloy, “Cores in random hypergraphs and boolean formulas,” Random Struc-
tures & Algorithms, vol. 27, no. 1, pp. 124–135, 2005.

[195] J. Mondal and A. Deshpande, “Managing large dynamic graphs efficiently,” in Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, 2012, pp. 145–156.

[196] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core decomposi-
tion,” IEEE TPDS, vol. 24, no. 2, pp. 288–300, 2012.

[197] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing the graph
500,” Cray Users Group (CUG), vol. 19, pp. 45–74, 2010.

[198] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad:
A timely dataflow system,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, 2013, pp. 439–455.

[199] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for graph an-
alytics,” in Proceedings of the twenty-fourth ACM symposium on operating systems
principles, 2013, pp. 456–471.

[200] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 51, no. 2,
pp. 122–144, 2004.

[201] G. Palla, A.-L. Barabási, and T. Vicsek, “Quantifying social group evolution,” Na-
ture, vol. 446, no. 7136, pp. 664–667, Apr. 2007.

[202] J. Pardalos and M. Resende, “On maximum clique problems in very large graphs,”
DIMACS series, vol. 50, pp. 119–130, 1999.

[203] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of inex-
pensive disks (RAID),” in Proceedings of the 1988 ACM SIGMOD International
Conference on Management of data, 1988, pp. 109–116.

[204] D. Presser, F. Siqueira, L. Rodrigues, and P. Romano, “EdgeScaler: effective elastic
scaling for graph stream processing systems,” in Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems, 2020, pp. 39–
50.

226

[205] M. Pundir, M. Kumar, L. M. Leslie, I. Gupta, and R. H. Campbell, “Supporting
on-demand elasticity in distributed graph processing,” in 2016 IEEE International
Conference on Cloud Engineering (IC2E), IEEE, 2016, pp. 12–21.

[206] H. Qin, R.-H. Li, G. Wang, L. Qin, Y. Cheng, and Y. Yuan, “Mining Periodic
Cliques in Temporal Networks,” in 2019 IEEE 35th International Conference on
Data Engineering (ICDE), IEEE, 2019, pp. 1130–1141.

[207] H. Qin, R.-H. Li, G. Wang, L. Qin, Y. Yuan, and Z. Zhang, “Mining Bursting Com-
munities in Temporal Graphs,” arXiv preprint arXiv:1911.02780, 2019.

[208] H. Qin, R. Li, Y. Yuan, G. Wang, W. Yang, and L. Qin, “Periodic Communities
Mining in Temporal Networks: Concepts and Algorithms,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1–1, 2020.

[209] raffi, New Tweets per second record, and how! https://blog.twitter.com/engineering/
en us/a/2013/new-tweets-per-second-record-and-how, Accessed June 28, 2021;
Archive at https://web.archive.org/web/20210628160850/https://blog.twitter.com/
engineering/en us/a/2013/new-tweets-per-second-record-and-how, 2013.

[210] S. Rajasekaran, “Randomized parallel selection,” in International Conference on
Foundations of Software Technology and Theoretical Computer Science, Springer,
1990, pp. 215–224.

[211] G. Ramalingam and T. Reps, “On the computational complexity of dynamic graph
problems,” Theoretical Computer Science, vol. 158, no. 1-2, pp. 233–277, 1996.

[212] T. O. Richardson, T. Kay, R. Braunschweig, O. A. Journeau, M. Rüegg, S. Mc-
Gregor, P. D. L. Rios, and L. Keller, “Ant behavioral maturation is mediated by
a stochastic transition between two fundamental states,” Current Biology, vol. 31,
no. 10, 2253–2260.e3, May 2021.

[213] M. Ripeanu, A. Iamnitchi, and I. Foster, “Mapping the gnutella network,” IEEE
Internet Computing, vol. 6, no. 1, p. 50, 2002.

[214] R. A. Rossi and N. K. Ahmed, “The Network Data Repository with Interactive
Graph Analytics and Visualization,” in AAAI, 2015.

[215] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph process-
ing using streaming partitions,” in Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, 2013, pp. 472–488.

[216] P. Rozenshtein, F. Bonchi, A. Gionis, M. Sozio, and N. Tatti, “Finding events in
temporal networks: Segmentation meets densest subgraph discovery,” Knowledge
and Information Systems, vol. 62, no. 4, pp. 1611–1639, Oct. 2020.

227

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://web.archive.org/web/20210628160850/https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://web.archive.org/web/20210628160850/https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how

[217] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The ubiquity of large
graphs and surprising challenges of graph processing,” Proceedings of the VLDB
Endowment, vol. 11, no. 4, pp. 420–431, 2017.

[218] S. Sallinen, R. Pearce, and M. Ripeanu, “Incremental graph processing for on-
line analytics,” in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, 2019, pp. 1007–1018.

[219] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra, P. Monticciolo,
A. Reuther, S. Smith, W. Song, et al., “Static graph challenge: Subgraph isomor-
phism,” in 2017 IEEE High Performance Extreme Computing Conference (HPEC),
IEEE, 2017, pp. 1–6.

[220] S.-V. Sanei-Mehri, A. Das, H. Hashemi, and S. Tirthapura, “Mining Largest Maxi-
mal Quasi-Cliques,” ACM Transactions on Knowledge Discovery from Data, vol. 15,
no. 5, pp. 1–21, Jun. 2021.

[221] A. E. Sariyüce and A. Pinar, “Fast hierarchy construction for dense subgraphs,”
Proceedings of the VLDB Endowment, vol. 10, no. 3, pp. 97–108, 2016.

[222] A. E. Sariyüce, C. Seshadhri, and A. Pinar, “Local algorithms for hierarchical dense
subgraph discovery,” VLDB, vol. 12, no. 1, pp. 43–56, 2018.

[223] A. E. Sariyüce, C. Seshadhri, A. Pinar, and Ü. V. Çatalyürek, “Finding the Hier-
archy of Dense Subgraphs using Nucleus Decompositions,” in Proceedings of the
24th International Conference on World Wide Web, International World Wide Web
Conferences Steering Committee, May 2015, pp. 927–937.

[224] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek, “In-
cremental k-core decomposition: Algorithms and evaluation,” The VLDB Journal,
vol. 25, no. 3, pp. 425–447, 2016.

[225] ——, “Streaming algorithms for k-core decomposition,” Proceedings of the VLDB
Endowment, vol. 6, no. 6, pp. 433–444, 2013.

[226] A. E. Sarıyüce and A. Pinar, “Peeling bipartite networks for dense subgraph discov-
ery,” in Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining, 2018, pp. 504–512.

[227] S. B. Seidman and B. L. Foster, “A graph-theoretic generalization of the clique
concept,” Journal of Mathematical sociology, vol. 6, no. 1, pp. 139–154, 1978.

[228] S. B. Seidman, “Network structure and minimum degree,” Social networks, vol. 5,
no. 3, pp. 269–287, 1983.

228

[229] K. Semertzidis, E. Pitoura, E. Terzi, and P. Tsaparas, “Finding lasting dense sub-
graphs,” Data Mining and Knowledge Discovery, vol. 33, no. 5, pp. 1417–1445,
2019.

[230] D. Sengupta, N. Sundaram, X. Zhu, T. L. Willke, J. Young, M. Wolf, and K.
Schwan, “GraphIn: An Online High Performance Incremental Graph Processing
Framework,” in Euro-Par 2016: Parallel Processing, Springer, Springer Interna-
tional Publishing, 2016, pp. 319–333.

[231] Y. Shao, L. Chen, and B. Cui, “Efficient cohesive subgraphs detection in parallel,”
in Proceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data, ACM, 2014, pp. 613–624.

[232] X. Shi, B. Cui, Y. Shao, and Y. Tong, “Tornado: A system for real-time iterative
analysis over evolving data,” in Proceedings of the 2016 International Conference
on Management of Data, 2016, pp. 417–430.

[233] J. Shun, “Practical parallel hypergraph algorithms,” in Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2020, pp. 232–249.

[234] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework
for shared memory,” in Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2013, pp. 135–146.

[235] J. Shun, L. Dhulipala, and G. Blelloch, “A simple and practical linear-work par-
allel algorithm for connectivity,” in Proceedings of the 26th ACM symposium on
Parallelism in algorithms and architectures, 2014, pp. 143–153.

[236] N. Simsiri, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Work-efficient paral-
lel union-find with applications to incremental graph connectivity,” in European
Conference on Parallel Processing, Springer, 2016, pp. 561–573.

[237] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang, “An overview
of microsoft academic service (mas) and applications,” in Proceedings of the 24th
International Conference on World Wide web, 2015, pp. 243–246.

[238] G. M. Slota, J. W. Berry, S. D. Hammond, S. L. Olivier, C. A. Phillips, and S.
Rajamanickam, “Scalable generation of graphs for benchmarking hpc community-
detection algorithms,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, 2019, pp. 1–14.

[239] M. Sozio and A. Gionis, “The community-search problem and how to plan a suc-
cessful cocktail party,” in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2010, pp. 939–948.

229

[240] G. L. Steele, D. Lea, and C. H. Flood, “Fast splittable pseudorandom number gen-
erators,” ACM SIGPLAN Notices, vol. 49, no. 10, pp. 453–472, Dec. 2014.

[241] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A
scalable peer-to-peer lookup service for internet applications,” ACM SIGCOMM
Computer Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[242] M. Stonebraker, “The case for shared nothing,” IEEE Database Eng. Bull., vol. 9,
no. 1, pp. 4–9, 1986.

[243] B. Sun, T.-H. H. Chan, and M. Sozio, “Fully dynamic approximate k-core decom-
position in hypergraphs,” ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 14, no. 4, pp. 1–21, 2020.

[244] T. Suzumura, S. Nishii, and M. Ganse, “Towards large-scale graph stream process-
ing platform,” in Proceedings of the 23rd International Conference on World Wide
Web, 2014, pp. 1321–1326.

[245] L. Takac and M. Zabovsky, “Data analysis in public social networks,” in Inter-
national Scientific Conference and International Workshop Present Day Trends of
Innovations, vol. 1, 2012.

[246] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu, “Mqsim:
A framework for enabling realistic studies of modern multi-queue ssd devices,”
in 16th USENIX Conference on File and Storage Technologies (FAST 18), 2018,
pp. 49–66.

[247] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From ”think
like a vertex” to ”think like a graph”,” Proceedings of the VLDB Endowment, vol. 7,
no. 3, pp. 193–204, Nov. 2013.

[248] L. Toader, A. Uta, A. Musaafir, and A. Iosup, “Graphless: Toward serverless graph
processing,” in 2019 18th International Symposium on Parallel and Distributed
Computing (ISPDC), IEEE, 2019, pp. 66–73.

[249] V. A. Traag, L. Waltman, and N. J. van Eck, “From Louvain to Leiden: Guarantee-
ing well-connected communities,” Scientific Reports, vol. 9, no. 1, pp. 1–12, Mar.
2019.

[250] A. Uta, S. Au, A. Ilyushkin, and A. Iosup, “Elasticity in graph analytics? a bench-
marking framework for elastic graph processing,” in 2018 IEEE International Con-
ference on Cluster Computing (CLUSTER), IEEE, 2018, pp. 381–391.

[251] M. P. Van Den Heuvel and O. Sporns, “Rich-club organization of the human con-
nectome,” Journal of Neuroscience, vol. 31, no. 44, pp. 15 775–15 786, 2011.

230

[252] L. M. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, “Adaptive partitioning
for large-scale dynamic graphs,” in 2014 IEEE 34th International Conference on
Distributed Computing Systems, IEEE, 2014, pp. 144–153.

[253] L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii, “Struc-
tural properties of the caenorhabditis elegans neuronal network,” PLoS Comput
Biol, vol. 7, no. 2, e1001066, 2011.

[254] N. Veldt, A. R. Benson, and J. Kleinberg, “The Generalized Mean Densest Sub-
graph Problem,” Aug. 2021.

[255] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution of user
interaction in Facebook,” in Proceedings of the 2nd ACM Workshop on Online So-
cial Networks, ACM Press, 2009, pp. 37–42.

[256] K. Vora, R. Gupta, and G. Xu, “KickStarter, Fast and accurate computations on
streaming graphs via trimmed approximations,” in Proceedings of the twenty-second
International Conference on architectural support for programming languages and
operating systems, vol. 52, Association for Computing Machinery (ACM), May
2017, pp. 237–251.

[257] J. Wang and J. Cheng, “Truss decomposition in massive networks,” Proceedings of
the VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

[258] N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q.-S. Hua, “Parallel algorithm for core
maintenance in dynamic graphs,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), IEEE, 2017, pp. 2366–2371.

[259] T. Wang, Integer hash function, https://web.archive.org/web/20071223173210/
http://www.concentric.net/∼Ttwang/tech/inthash.htm, 1997.

[260] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,”
nature, vol. 393, no. 6684, pp. 440–442, 1998.

[261] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph: A
scalable, high-performance distributed file system,” in Proceedings of the 7th sym-
posium on Operating systems design and implementation, 2006, pp. 307–320.

[262] C. Wickramaarachchi, A. Kumbhare, M. Frincu, C. Chelmis, and V. K. Prasanna,
“Real-time analytics for fast evolving social graphs,” in 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, IEEE, 2015,
pp. 829–834.

[263] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein, “Anna: A kvs for any scale,” IEEE
Transactions on Knowledge and Data Engineering, 2019.

231

https://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
https://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm

[264] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu, “Core decomposition
in large temporal graphs,” in 2015 IEEE International Conference on Big Data (Big
Data), IEEE, 2015, pp. 649–658.

[265] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and L. Zhou,
“Gram: Scaling graph computation to the trillions,” in Proceedings of the Sixth
ACM Symposium on Cloud Computing, 2015, pp. 408–421.

[266] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework for dis-
tributed computation on real-world graphs,” Proceedings of the VLDB Endowment,
vol. 7, no. 14, pp. 1981–1992, 2014.

[267] J. Yang and J. Leskovec, “Defining and evaluating network communities based on
ground-truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–213,
2015.

[268] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. S. Lui, “Diversified Temporal
Subgraph Pattern Mining,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1965–1974.

[269] M. Yu, D. Wen, L. Qin, Y. Zhang, W. Zhang, and X. Lin, “On querying historical
k-cores,” Proceedings of the VLDB Endowment, vol. 14, no. 11, pp. 2033–2045,
2021.

[270] W. W. Zachary, “An Information Flow Model for Conflict and Fission in Small
Groups,” Journal of Anthropological Research, vol. 33, no. 4, pp. 452–473, 1977.

[271] C. Zhang, F. Zhang, W. Zhang, B. Liu, Y. Zhang, L. Qin, and X. Lin, “Exploring
Finer Granularity within the Cores: Efficient (k, p)-Core Computation,” in 2020
IEEE 36th International Conference on Data Engineering (ICDE), IEEE, 2020,
pp. 181–192.

[272] F. Zhang, C. Li, Y. Zhang, L. Qin, and W. Zhang, “Finding critical users in so-
cial communities: The collapsed core and truss problems,” IEEE Transactions on
Knowledge and Data Engineering, vol. 32, no. 1, pp. 78–91, 2018.

[273] Y. Zhang and J. X. Yu, “Unboundedness and efficiency of truss maintenance in
evolving graphs,” in Proceedings of the 2019 International Conference on Man-
agement of Data, ACM, 2019, pp. 1024–1041.

[274] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach for core
maintenance,” in 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), IEEE, 2017, pp. 337–348.

232

[275] W. Zhou, H. Huang, Q.-S. Hua, D. Yu, H. Jin, and X. Fu, “Core decomposition and
maintenance in weighted graph,” World Wide Web, pp. 1–21, 2020.

233

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Thesis Statement and Research Overview

	2 | Preliminaries and Notations
	Graphs and Graph Extensions
	Graph Properties
	Dynamic Graphs
	Dynamic Graph Algorithms
	Dense Regions of Graphs
	Large-Scale Dynamic Graph Systems
	Temporal Dense Regions

	3 | Unifying Dense Regions Through Hypergraph Cores
	Computational Complexity of Updates
	Nuclei and Hypercores
	Maintaining Nucleus Decompositions
	Experiments and Results
	Summary

	4 | From Coreness to Cores
	Related Work
	Preliminaries
	Shell Tree Index
	Computing the ST-Index
	Maintaining the ST-Index
	Empirical Analysis
	Summary

	5 | Temporal Dense Regions with Core Chains
	Introduction
	Preliminaries and Related Work
	Core Chain Definition
	Computing Core Chains
	Evaluation
	Summary

	6 | Loading and Saving Massive Graphs
	PIGO I/O Library
	Experiments and Results
	Summary

	7 | Scaling Up: Maintaining Cores in Parallel
	Background
	Static h-index Algorithms
	h-Index Based Core Maintenance
	Experiments and Results
	Summary

	8 | Distributed Fast h-Index Computation
	Introduction
	Background and Prior Approaches
	DHIndex
	Implementation and Evaluation
	Summary

	9 | Scaling Out: Elastic and Distributed Computation
	Background and Related Work
	ElGA
	Experiments
	Temporal Support in ElGA
	ElGA's Programming Interface
	Summary

	10 | Conclusion and Future Directions
	Conclusion
	Future Directions

	References

