
Batch Dynamic Algorithm to Find 𝑘-Core Hierarchies
Kasimir Gabert

∗

Sandia National Laboratories

Albuquerque, New Mexico, USA

kggaber@sandia.gov

Ali Pınar

Sandia National Laboratories

Livermore, California, USA

apinar@sandia.gov

Ümit V. Çatalyürek
†

Georgia Institute of Technology

Atlanta, Georgia, USA

umit@gatech.edu

ABSTRACT
Finding 𝑘-cores in graphs is a valuable and effective strategy for

extracting dense regions of otherwise sparse graphs. We focus

on the important problem of maintaining cores on rapidly chang-

ing dynamic graphs, where batches of edge changes need to be

processed quickly. Many prior dynamic algorithms focus on the

problem of maintaining a core decomposition. This finds vertices

that are dense in some subgraph, but the subgraph itself is not

returned. We develop a new dynamic batch algorithm to maintain

cores, with their connected subgraphs, that improves efficiency

over processing edge-by-edge. We implement our algorithm and

experimentally show that with it core queries can be returned on

rapidly changing graphs quickly enough for interactive applica-

tions. For 1 million edge batches, on many graphs we run over

100× faster than processing edge-by-edge while remaining under

re-computing from scratch.

ACM Reference Format:
Kasimir Gabert, Ali Pınar, and Ümit V. Çatalyürek. 2022. Batch Dynamic

Algorithm to Find 𝑘-Core Hierarchies. In Joint Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analytics
(NDA) (GRADES & NDA’22), June 12, 2022, Philadelphia, PA, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3534540.3534694

1 INTRODUCTION
An important problem in graph analysis is finding locally dense

regions in globally sparse graphs. In this work we consider the

problem of finding 𝑘-cores [36, 40], which are maximal connected

subgraphs with minimum degree at least 𝑘 . This problem has seen

significant attention given its efficiency [36] and usefulness [2, 16,

20, 21, 25, 26, 44].

Many practically important graphs from web data, social net-

works, and related fields are both large and continuously changing.

The problem of maintaining core decompositions on graphs has been
well studied [30, 37, 47, 48]. Existing approaches run in linear time

in the size of the graph, which is theoretically optimal [47], and

on many real-world graphs they maintain decompositions within

milliseconds after edge changes. So, is the problem solved?

∗
Also with Georgia Institute of Technology.

†
Also with Amazon Web Services. This publication describes work performed at the

Georgia Institute of Technology and is not associated with Amazon.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9384-3/22/06.

https://doi.org/10.1145/3534540.3534694

Which dense region is a
well connected vertex in?

When does the core
hierarchy itself change?

Figure 1: The core hierarchy for the LiveJournal social net-
work graph. Tracking dense regions over time is important
for understanding structural changes, and extracting the ver-
tices within a dense region is important for almost all known
𝑘-core applications. Simply finding density levels per vertex
is insufficient to answering the above questions.

Unfortunately, these approaches only address half of the problem
of returning a𝑘-core [38].𝑘-cores are originally defined as connected
subgraphs [40]. All of the application examples referenced above

rely on or use connectivity. A core decomposition, on the other hand,

provides coreness values for every vertex: that is, the maximal value

𝑘 such that the vertex is in a𝑘-core. Computing only coreness values

has limited use, with only a few known applications (e.g., [24]).

Note that 𝑘-cores are hierarchical by definition: a 𝑘-core is al-

ways fully contained in a potentially larger (𝑘 − 1)-core, with 𝑘 > 1.

The core hierarchy is defined as all cores along with their hierar-
chical relationships. Figure 1 shows the cores of the LiveJournal

graph [45] along with the hierarchical relationships and two im-

portant, example questions that cannot be answered with coreness

values alone. Maintaining the hierarchy has been independently

proposed several times [5, 13, 15, 31, 38] in different contexts, all of

which use a Shell Tree Index (ST-Index). All of these approaches
internally use a 𝑘-core decomposition algorithm [30, 37, 47, 48]. We

provide a batch technique to maintain the ST-Index that has lower
runtime variability when batch sizes grow.

Approach. The ST-Index builds on the laminar structure of cores,

that is cores are either pairwise disjoint or fully contained inside one

another, naturally forming a tree. Each node in this tree includes

vertices in the shell of the given core, that is vertices which are

not in any higher core. Coupled with a reverse map from vertices

to tree nodes, a core can be efficiently returned by traversing the

subtree staying below the desired 𝑘 value. The core hierarchy is

the tree, capturing both cores and relationships between cores.

https://doi.org/10.1145/3534540.3534694
https://doi.org/10.1145/3534540.3534694

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasimir Gabert, Ali Pınar, and Ümit V. Çatalyürek

We build the tree by first identifying regions of the graph where

the cores are the same, known as subcores, and then forming a

directed acyclic graph (DAG) with each subcore as a node. Starting

from the highest 𝑘 values, we process nodes in the DAG upwards,

merging them to form a tree.

In real-world graphs there is significant variance in the rate of

change. As such, batch dynamic algorithms that can reduce the

total work when operating on batches are desired [11, 34]. We

provide a batch dynamic algorithm to maintain cores themselves,

starting from core decompositions. We do this by maintaining the

subcore DAG used during construction. After a batch of changes,

we revisit each node in the DAG that was modified and re-compute

any subcore changes. Any DAG changes are then pushed into the

tree, temporarily turning the tree back into a DAG.We then traverse

from the sink upwards, correcting the tree.

In [31], developed concurrently with this work, a batch mainte-

nance algorithm for 𝑘-cores is maintained. Our presentation differs,

as we explicitly describe queries and prove their efficiency, along

with our algorithmic approach for the construction and batch main-

tenance with a subcore DAG.

Contributions. Our main contributions are:

(1) A subcore DAG based ST-Index construction
(2) A batch dynamic algorithm to maintain ST-Index that re-

duces the work of edge-by-edge updates

(3) An experimental evaluation on real-world graphs that show

with both our edge-by-edge and batch algorithms, ST-Index
is suitable for interactive use

The remainder of this paper is structured as follows. In § 2 we

describe the related work. In § 3 we formally describe our model and

problem. In § 4 we present ST-Index. In § 5 we provide our algorithm
to compute ST-Index from scratch. In § 6 we introduce our batch

algorithm. In § 7 we experimentally evaluate our implementations,

and in § 8 we conclude.

2 RELATEDWORK
𝑘-cores were introduced independently in [36, 40]. [36] additionally

provided a peeling algorithm that uses bucketing to run in𝑂 (𝑛+𝑚).
The main strategy for computing 𝑘-cores has remained roughly the

same since then: iteratively peeling the graph, or excluding vertices

with too low of degrees, until all degrees are 𝑘 .

For maintenance, [30] and [37] independently proposed Traver-
sal, which limits consideration of vertices around an edge change if

they provably cannot update values. [37] defines the notion of sub-

cores and purecores, variants of which are used in all known main-

tenance algorithms to limit considered subgraphs. [48] proposed

Order, which is the current state-of-the-art and maintains a peeling
order, instead of coreness values directly, using an order-statistic

treap and a heap. Parallel approaches have relied on identifying a

set of vertices that can be independently peeled [1, 3, 22, 23]. [4, 47]

provide batch algorithms that reduce work as multiple edges are

processed simultaneously.

All of the above focus on computing the coreness values for
vertices. In fact, the lack of focus on connectivity has, in some cases,

resulted in later work redefining cores to not include connectivity

(e.g., [35]) which limits their usefulness.

Numerous other targets, similar to cores, have been proposed [35].

[12, 49] develop weighted extensions to cores, [32] uses core con-

cepts to reinforce connections within networks, [19] proposes no-

tions of cores for multilayer networks, and [46] ensures vertices in

core-like regions are also relatively cohesive given their neighbors.

In cases where the cores are used for downstream algorithms, re-

turning the actual (connected) vertices is identified as crucial and

algorithms are built to support such queries [33].

Community search [9, 42] is a more general problem for return-

ing a connected set of vertices in a community based on a seed

set. The community is commonly defined with a minimum degree
measure [14]. In this case, if the query consists of a single vertex,

community search can return exactly a core. For this reason, we

pull from the field of community search to develop ST-Index. [5]
proposed the first known shell tree index. It does not support ef-

ficient queries, as it creates additional vertices for each coreness

level that must be addressed. [38] identifies the same problem that

we address—cores require connectivity—and proposes a shell tree-

like index with a static construction in the more general nuclei

framework, but leaves out maintenance. [13] operates on attributed

graphs and extends [38]’s approach and [5]’s index with incremen-

tal and decremental algorithms, but without batch algorithms. We

use this as our baseline. Concurrent with this work, [31] provides a

batch algorithm that is based on [13] and batches changes to the

tree directly, without the use of a DAG.

3 PRELIMINARIES
A graph 𝐺 = (𝑉 , 𝐸) is a set of vertices 𝑉 and set of edges 𝐸. An

edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 represents the connection between two distinct

vertices 𝑢, 𝑣 ∈ 𝑉 . We denote 𝑛 = |𝑉 | and𝑚 = |𝐸 |.
We use Γ(𝑣) to represent the neighboring edges of 𝑣 ∈ 𝑉 . The

degree of 𝑣 ∈ 𝑉 is |Γ(𝑣) |. For directed graphs, Γin represents edges

ending at the given vertex and Γout represents edges leaving a

vertex. If there is more than one graph, we use Γ𝐺 for graph𝐺 . The

neighborhood of a vertex set 𝑆 ⊆ 𝑉 , Γ(𝑆), represents vertices and
edges connected to 𝑆 , that is the subgraph induced by 𝑆 and all

neighbors of vertices in 𝑆 .

Dynamic Graph Model. We consider graphs that are changing

over time, known as dynamic graphs. An edge change either adds a
non-existent edge to the graph or removes an existing edge—we

assume it is not a multigraph. Vertices are implied by the edges,

and so are automatically added and removed when they have a

non-zero degree. The dynamic graph then consists of a turnstile

stream of edge changes, starting from the empty graph.

In this model, the timestamp of edges received is not preserved

and not used by the algorithm. An algorithm that does take into

consideration timestamps is called a temporal algorithm, and can

be either dynamic or static.

Definition 3.1. Consider a dynamic graph at some point in time.

A dynamic graph algorithm starts from the graph at a previous

point in time, the output at that point in time, and potentially

some additional input state. Then, given just the changes in the

graph from the previous time to the current time, the algorithm

will produce the same output as a graph algorithm running only

on the latest graph.

Batch Dynamic Algorithm to Find 𝑘-Core Hierarchies GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

2-core

3-core

1-core

3-core

1

4

2

3

5 6

7

10

8

9

Figure 2: An example graph and its cores. Note that there
are two separate 3-cores.

We call an incremental algorithm a dynamic graph algorithm

which can only handle edge insertions and a decremental algorithm
one which can only handle edge deletions. A batch dynamic al-
gorithm can handle 𝑡 ′ > 𝑡 + 1. Our batch algorithm, described in

Section 6, has an additional state bound by the size of the graph.

Cores. We provide a brief background on 𝑘-cores.

Definition 3.2. Let 𝐺 be a graph and 𝑘 ∈ N. A 𝑘-core in 𝐺 is a

set of vertices 𝑉 ′ which induce a subgraph 𝐾 = (𝑉 ′, 𝐸 ′) such that:

(1) 𝑉 ′ is maximal in 𝐺 ; (2) 𝐾 is connected; and (3) the minimum

degree is at least 𝑘 , min𝑣∈𝑉 ′ |Γ𝐾 (𝑣) | ≥ 𝑘 .

Figure 2 shows an example graph and its cores. There are two

separate 𝑘 = 3 cores, one with vertices 1 through 4 and the other

with vertices 7 through 10. If all vertices with less than a degree 3

are iteratively removed, the remaining graph consists of those two

separate connected components.

Definition 3.3. Let𝐺 = (𝑉 , 𝐸) be a graph and 𝑣 ∈ 𝑉 . The coreness
of 𝑣 , denoted 𝜅 [𝑣], is the value 𝑘 such that 𝑣 is in a 𝑘-core but not

in a (𝑘 + 1)-core.

Definition 3.4. Let 𝐺 = (𝑉 , 𝐸) be a graph. The 𝑘-core number of

𝐺 , denoted 𝜌𝐺 and shortened to 𝜌 , is given by 𝜌 = max𝑣∈𝑉 𝜅 [𝑣].

Problem Statement. We consider the problem of efficiently sup-

porting core and coreness queries on a dynamic graph stream. Let

𝑘 ∈ N and 𝑢 ∈ 𝑉 .
• The coreness query K(𝑢) returns 𝜅 [𝑢].
• The core query C(𝑢, 𝑘) returns the vertices of the 𝑘-core

subgraph that contains 𝑢.

• The hierarchy queryH returns the hierarchical structure of

the cores as a tree, with the root as the 0-core

Prior work in the context of cores has focused only on supporting

K queries on dynamic graphs. Unfortunately, this prevents many

of the applications of 𝑘-cores which rely on extracting dense regions
of a graph.

4 SHELL TREE INDEX
In this section we present the Shell Tree Index, ST-Index, which is

able to efficiently return cores for different vertices: its runtime is

asymptotically the size of the result and its space is linear in the

number of vertices. This index has been independently developed

6

5

1 2 7 8

vertices

∅0

1

2

33

k

3 4 9 10

legend

Figure 3: The shell tree for the graph shown in Figure 2. On
the left side are the 𝑘-shell values, and on the right side are
the contained vertices. Each directed edge indicates inclusion
of the deeper cores.

several times [5, 13, 15, 31, 38] in different contexts. We present the

index here for completeness. We will address how to construct the

index in Section 5 and how to maintain it in Section 6.

K(𝑢) queries, or coreness queries, can be efficiently returned

using an array, so we focus on C andH queries.

Lemma 4.1 ([37]). Cores form a laminar family, that is every pair
of cores are either disjoint or one is contained in the other.

Definition 4.2. Let 𝐺 = (𝑉 , 𝐸) be a graph and 𝐾 ⊆ 𝑉 a 𝑘-core in

𝐺 for some 𝑘 ∈ N. Then 𝑆 is a 𝑘-shell if 𝑆 = {𝑣 ∈ 𝐾 : 𝜅 [𝑣] = 𝑘}.
Note that the shell is disconnected, however it is a subset of a

connected core. This means that the traditional approach of using

coreness values to compute the shell does not work. We address

shell computation later in Section 5, using subcores.
A shell tree 𝑇 is at the heart of the ST-Index. We call the vertices

of𝑇 tree nodes, to distinguish from the vertices in𝐺 . Each node has

two additional pieces of data associated with it: a 𝑘 value and a set

of vertices (in 𝐺). 𝑇 is built as follows. A root node is made with

𝑘 = 0 and a vertex set of isolated vertices (those with |Γ𝐺 (𝑣) | = 0).

Next, nodes are made in 𝑇 for every 𝑘-shell. Its 𝑘 attribute is set to

𝑘 corresponding to the shell and its vertex list is set to the vertices

in the 𝑘-shell. An edge is created in𝑇 by linking 𝑘-shells, following

Lemma 4.1. An example shell tree is shown in Figure 3. The ST-
Index consists of𝑇 and a map𝑀 , mapping 𝑣 ∈ 𝑉 to the appropriate

node in 𝑇 .

Lemma 4.3. The shell tree is a directed, rooted tree.

Proof. Suppose a tree node𝑢, corresponding to core𝐾𝑢 has two

in-edges. By definition 4.2, each parent corresponds to a unique 𝑘-

shell. Consider the two corresponding cores, 𝐾1 and 𝐾2. They both

include 𝐾𝑢 , yet are distinct, and so they have non-trivial overlap

contradicting Lemma 4.1. The root is defined with 𝑘 = 0. □

Lemma 4.4. The out-degree of a non-root tree node with no corre-
sponding vertices in the shell tree can be at most 1.

Proof. Let the tree node with no corresponding vertices be at

level 𝑘 > 0 with out-degree at least 2. Then, there are two distinct

cores at 𝑘 + 1 (not necessarily shells), and one core at 𝑘 . The two

cores at 𝑘 + 1 must be disconnected by construction.

However, because the tree node has no corresponding vertices,

we know that every vertex in the 𝑘-core is also in a (𝑘 + 1)-core.

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasimir Gabert, Ali Pınar, and Ümit V. Çatalyürek

Furthermore, the 𝑘-core is connected. Hence, it is not possible for

the two cores at 𝑘 + 1 to be disconnected. □

Lemma 4.5. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 = |𝑉 |. The number
of nodes in the shell tree is at most 𝑛 + 1.

Proof. By Lemma 4.4, each node in the tree (besides the root)

must have at least one vertex. As there are at most 𝑛 vertices, the

size of the tree is at most 𝑛 + 1. □

Queries on ST-Index. The three queries, K(𝑢), C(𝑢, 𝑘), and H
are returned as follows.

• K(𝑢) follows the map 𝑀 [𝑢] to the shell tree node 𝑛, and

then returns the 𝑘 value for 𝑛.

• C(𝑢, 𝑘) runs a tree traversal staying above 𝑘

• H returns the tree nodes and attributes directly.

Efficiency. We next address the ST-Index query efficiency.

Theorem 4.6. C(𝑢, 𝑘) queries on ST-Index run in 𝑂 (|C(𝑢, 𝑘) |)
and correctly return the 𝑘-core.

Proof. First, we show correctness. Let𝐶∗ be the core for C(𝑢, 𝑘),
that is𝐶∗ is a 𝑘-core and𝑢 ∈ 𝐶∗. The traversal will cover all vertices
in the subtree containing 𝑢 at level 𝑘 and higher. By Lemma 4.1

we know all denser cores are fully contained in the desired 𝑘-core.

By Lemma 4.4, we know that any split will occur in an explicit

tree node with vertices in the resulting shell. So, this split will be

captured by the tree traversal. As such, all vertices in the tree nodes

traversed with values 𝑘 or more exactly form the 𝑘-core.

Let down represent higher 𝑘 values in the tree. Next, we show

efficiency. Every downward link in the subtree needs to be fully

explored, and there are no nodes with overlapping vertices in the

tree. Once a downward traversal occurs, there is no need to check

parents. When traversing upwards, all children except the previous

one will be explored downwards. Every node is visited only once

and all visited vertices are part of the returned core.

As ST-Index is a tree, whether to traverse to the parent can be

decided based on whether the parents’ value is lower than 𝑘 . This

will result in one additional operation. As such, the runtime is

𝑂 (|C(𝑢, 𝑘) |) and efficient. □

Theorem 4.7. The ST-Index takes 𝑂 (𝑛) space.

Proof. The ST-Index consists of a map of size𝑛 between vertices

and tree nodes, along with the shell tree itself. By Lemma 4.5, the

tree has at most 𝑛 + 1 nodes and 𝑛 tree edges. Each tree node may

have vertices, but there are no redundant vertices. So, the size is

𝑂 (𝑛 + 𝑛 + 1 + 𝑛 + 𝑛) = 𝑂 (𝑛). □

Returning ST-Index directly efficiently resolvesH queries.

5 COMPUTING THE ST-INDEX
Computing (and maintaining) the ST-Index hinges on building (and

maintaining) the shell tree. We propose a subcore directed acyclic
graph, that provides a link between core decompositions and the

shell tree. Computing the ST-Index is broken into three parts: core-

ness values, subcore DAG, and the shell tree.

cores A B

D

E
I

subcores

C

1

2

3
34

F

J

HG

Figure 4: An example graph along with its cores (top) and
subcores (bottom). Note that a core may consist of multiple
subcores, and subcores are disjoint.

Subcore DAG

A B D

EF G

IH

C

J J

H I

Shell Tree

ABCD

FEG

Figure 5: The corresponding subcore DAG and shell tree
from the example graph in Figure 4.

Computing Coreness Values. Computing coreness values has been

well studied on graphs [10, 36]. The most direct approach, known

as peeling, starts by keeping track of vertex degrees. It then moves

through coreness values, removing vertices with insufficient degree

and recording when they are removed. This is efficient, running in

𝑂 (𝑛 +𝑚), when using buckets [36]. We refer the reader to [35].

Computing the Subcore DAG. Next, we introduce the subcore di-
rected acyclic graph (DAG), which is used to bridge between coreness
values and cores.

Definition 5.1. Let 𝐺 be a graph. A subcore is a connected sub-

graph 𝐶 such that (1) 𝐶 is maximal and (2) ∀𝑣 ∈ 𝐶 , 𝜅 [𝑣] = 𝑘 for

some 𝑘 ∈ N.

Subcores were introduced in [37] to limit the region that may

have coreness values change on graph changes. Figure 4 shows an

example graph with cores and subcores.

Observation 5.1. Subcores are disjoint, by maximality of cores

and property (2), and so there are at most 𝑛 subcores.

After breaking cores up into subcores, the glue to link them back

together is saved as a subcore DAG. The subcore DAG is built with

a directed edge from every lower 𝑘 subcore to a strictly higher 𝑘

subcore that it is directly connected to. Figure 5 shows the example

DAG and shell tree from Figure 4.

Batch Dynamic Algorithm to Find 𝑘-Core Hierarchies GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

Input: graph 𝐺 = (𝑉 , 𝐸), 𝜅
1 𝐶 ← ∅; 𝐷 ← ∅ ⊲ DAG vertices and edges

2 𝐿 ← [𝑣 : 𝑣 ∈ 𝑉] ⊲ Labels
⊲ Compute the subcores

3 for 𝑣 ∈ 𝑉 do
4 if 𝐿[𝑣] ≠ 𝑣 then continue

5 𝐶 ← 𝐶 ∪ {𝑣}
⊲ Perform a BFS that stays within 𝜅 levels from 𝑣

6 𝑄 ←Queue(); 𝑄.push(𝑣)
7 while 𝑄 ≠ ∅ do
8 𝑛 ← 𝑄.pop()
9 for𝑤 ∈ Γ(𝑛) : 𝐿[𝑤] ≠ 𝑣 ∧ 𝜅 [𝑤] = 𝜅 [𝑣] do
10 𝑄.push(𝑤)
11 𝐿[𝑤] = 𝑣

⊲ Produce the DAG edges

12 for 𝑣 ∈ 𝑉 do
13 for 𝑛 ∈ Γ(𝑣) where 𝐿[𝑣] ≠ 𝐿[𝑛] do
14 𝐷 ← 𝐷 ∪ {⟨𝐿[𝑣], 𝐿[𝑛]⟩}
15 return DAG=(𝐶, 𝐷)

Algorithm 1: Building the subcore DAG.

Lemma 5.2. The subcore DAG size is bound by 𝐺 .

Proof. Each vertex in the subcore DAG corresponds to a con-

nected subgraph in the graph, and every edge in the DAG is a

directed edge that results from contracting all vertices in each sub-

core. Contraction only removes edges and vertices, and no new

edges or vertices are added. □

Observation 5.2. The subcore DAG is not a tree. Consider a

3-clique and a 4-clique, connected via an edge, and both connected

to another vertex forming a triangle.

The process of building the subcore DAG is shown inAlgorithm 1.

This algorithm performs a breadth-fist search (BFS) for each vertex.

The search is constrained to stay within a 𝜅 level, and DAG edges

are emitted on graph edges that leave 𝜅 levels. Efficient connected

components algorithms, e.g., [41], could be used instead.

Lemma 5.3. Algorithm 1 runs in 𝑂 (𝑛 +𝑚).

Proof. From lines 6–11, inside the internal BFS, each vertex will

be visited once. Inside, each edge will be visited once. Finally, the

BFS only starts from unvisited vertices.

For lines 12–14, each vertex and edge will again be visited, re-

sulting in 𝑂 (𝑛 +𝑚) work. □

5.1 Building the Shell Tree
Given a subcore DAG and 𝜅 values, we can compute the shell tree.

Our algorithm starts with the DAG and modifies it as it moves from

the sinks upwards (towards lower 𝑘 values), using a max-heap. Each

processed vertex: 1) identifies neighbors that are at its 𝜅 level, and

merges itself with them; 2) sets a single node that is an in-neighbor

with the closest 𝜅 value as the tree parent; and 3) moves all other

in-edges to the identified parent, ensure it becomes a tree. The

details are presented in Algorithm 2.

Lemma 5.4. Algorithm 2 correctly builds the shell tree.

Input: DAG=(𝐶, 𝐷), 𝜅
1 𝑇 = (𝑁, 𝐸) ← DAG

2 𝑆 ← ∅
3 𝐻 ← Heap() ⊲ Empty Heap

4 for sink 𝑠 ∈ 𝑁 do
5 𝐻.push(𝜅 [𝑠], 𝑠)
6 while 𝐻 ≠ do
7 𝑣 ← 𝐻.pop()
8 if 𝑣 ∈ 𝑆 then continue
9 𝑆 ← 𝑆 ∪ {𝑣}

⊲ Merge with neighbors at same level

10 while ∃𝑛 ∈ Γ(𝑣) : 𝜅 [𝑛] = 𝜅 [𝑣] do
11 Merge(𝑣, 𝑛)
12 𝑆 ← 𝑆 ∪ {𝑛}

⊲ Move all remaining and new in neighbors

13 𝑡 ← argmax𝑛∈Γin (𝑣) 𝜅 [𝑛]
14 for 𝑛 ∈ Γin (𝑣) do
15 if 𝑛 ≠ 𝑡 then MoveEdge(⟨𝑛, 𝑣⟩ → ⟨𝑛, 𝑡⟩)
16 𝐻.push(𝜅 [𝑛], 𝑛)
17 return 𝑇

Algorithm 2: Constructing the shell tree.

Proof. We argue that after running Algorithm 2, each node will

exactly contain the shell. First, a node needs to contain all connected

subcore DAG nodes at the given 𝜅 value. Second, it cannot have

additional nodes merged with it. We argue correctness via induction

on 𝜅. At the highest 𝜅 level, by the DAG properties, we know the

tree nodes connected to the sink are shells and valid. Now, consider

a tree node with 𝜅 and assume nodes at 𝜅 ′ > 𝜅 are valid. The node

is formed by merging DAG nodes at the same level, which are all

connected. Any connectivity that is not at level 𝜅 will be preserved

by moving edges to the node’s parent. By Lemma 4.1, we know that

any DAG neighbors that it is connected to will also be connected

to the parent, and so the new tree node is valid. □

Lemma 5.5. Algorithm 2 runs in 𝑂 (𝜌 (𝑛 +𝑚) log𝑛).

Proof. The heap processes each vertex once, and each vertex

can potentially have all edges attached, resulting in 𝑂 (𝑛 +𝑚) per
iteration. However, edges may be carried upwards, and in the worst

case all edges except one are carried upwards costing 𝜌 . The heap

contributes log𝑛. □

6 MAINTAINING THE ST-INDEX
In this section, we show how to maintain the ST-Index on a graph

stream. The objective is to develop a batch dynamic algorithm that

will output ST-Index with a small internal state, a quick runtime,

and low variability.

Maintaining coreness values is an important part of our overall

approach, as it is the first computational step. We provide pointers

to coreness value maintenance and then we present our batch

maintenance algorithm.

6.1 Maintaining Coreness
We refer the reader to [17, 30, 37, 48] for algorithms to maintain

𝜅. These approaches (and similarly ST-Index) extend to trusses [8]

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasimir Gabert, Ali Pınar, and Ümit V. Çatalyürek

A

G- G+

B

C

D

E

F

A

B

C

D

E

F

Figure 6: An example graph before a batch of insertions (𝐺−)
and after (𝐺+). The coreness moves from 𝜅 = 2 to 𝜅 = 5 for
each vertex.

and other nuclei [39] by use of a hypergraph [18]. For our exper-

iments we implemented and use Order [48], the state-of-the-art
decomposition maintenance algorithm.

For notational convenience, consider a time 𝑡 . Let 𝐺− denote

𝐺 (𝑡) and 𝐺+ denote 𝐺 (𝑡+Δ) . Let 𝜅− denote the 𝜅 values in 𝐺− and
𝜅+ denote 𝜅 values in 𝐺+.

We take advantage of the following crucial property of coreness

values on graphs: the subcore theorem.

Theorem 6.1 ([37]). Let {𝑢, 𝑣} be an edge change. Suppose𝜅𝐺− [𝑢] ≤
𝜅𝐺− [𝑣]. Then, only vertices in the subcore containing 𝑢 may have 𝜅
values change in 𝐺+, and they may only change by 1 (increase by 1
for insertion, decrease by 1 for deletion.)

6.2 Batch Maintenance
The idea for our batch maintenance is to keep the subcore DAG
in memory and use it to update the subcore tree. We maintain an

additional pointer between every node in the tree and every node

in the subcore DAG. There are two main parts to maintaining the

subcore tree in the subcore batch algorithm. First, we maintain the

subcore DAG by iterating over changed vertices and recomputing

any subcore changes, creating and merging subcores (locally) as

appropriate. Second, we need to maintain the ST-Index given the

DAG changes. To do this we begin bymaking all of the DAG changes

propagate forward to the tree. Any deleted DAG node results in

deleting the reference from the subcore tree, any newly empty tree

nodes are deleted, and any new DAG nodes and their connections

are added to the tree. The tree is now no longer a DAG. We correct

the tree with Algorithm 2.

The baseline approach is presented in Appendix A, and denoted

SingleEdge. SingleEdge processes each edge update and either

merges branches of the ST-Index at the approach levels or splits

them. SingleEdge is not a batch algorithm, however [31] extends

SingleEdge by collecting edges and making the merges and splits

in batches. In this approach, edge insertions and deletions need to

be processed separately. Unlike SingleEdge, our batch approach

naturally handles deletions identically to insertions and so both

insertions and deletions can be mixed inside of batches. The Batch
algorithm is presented in Algorithm 3. Following the example in

Figure 6, Figure 7 shows saved work between SingleEdge and Batch.
Our runtime is the cost of Algorithm 2 plus the cost of a BFS

over each modified subcore. Correctness follows from Algorithm 2

as we maintain data structures. In the worst case this can be the

Input: ST-Index = (𝑀,𝑇), DAG 𝐷 , batch 𝐵

1 𝐶 ← {𝑣 : 𝑣 ∈ 𝑒 ∈ 𝐵}; 𝐾 ← ∅
2 𝐼 ← ∅ ⊲ Visited set

3 for 𝑣 ∈ 𝐶 do
4 if 𝑣 ∈ 𝐼 then continue

5 𝐼 ← 𝐼 ∪ {𝑣}
6 𝑄 ←Queue; 𝑄.push(𝑣) ⊲ Change queue

7 while 𝑄 ≠ ∅ do
8 𝑞 ← 𝑄.pop()
9 𝑛𝑑 , 𝑛𝑇 ← 𝐿[𝑞] ⊲ DAG/Tree node of 𝑞

10 𝐾 ← 𝐾 ∪ {𝑛𝐷 }
11 𝑛′

𝑑
← new DAG node

12 assign 𝑞 to 𝑛′
𝑑
in 𝐷 and𝑀,𝑇

13 𝑆 ←Queue; 𝑆.push(𝑞) ⊲ Subcore queue

14 while 𝑆 ≠ ∅ do
15 𝑛 ← 𝑆.pop()

/* Check if 𝑛 is in the subcore */

16 if 𝜅+ [𝑛] ≠ 𝜅+ [𝑞] then
/* If 𝑛 changed, process it separately */

17 if 𝑛 ∉ 𝐼 and 𝜅− [𝑛] ≠ 𝜅+ [𝑛] then
18 𝐼 ← 𝐼 ∪ {𝑛}
19 𝑄.push(𝑛)
20 continue

21 if 𝑛 ∉ 𝐼 then
22 𝐼 ← 𝐼 ∪ {𝑛}
23 𝑄.push(𝑛)
24 assign 𝑛 to 𝑛′

𝑑
in 𝐷 and𝑀,𝑇

25 remove newly isolated nodes in 𝐷

26 copy DAG edges from DAG nodes in 𝐾 to 𝑇

27 remove newly empty tree nodes in 𝑇

28 run Algorithm 2

Algorithm 3: The Batch algorithm.

runtime of Algorithm 2, but we next show empirically we run faster

than re-computing from scratch.

7 EMPIRICAL ANALYSIS
In this section we perform an experimental evaluation of our ap-

proach to demonstrate that it is able to provide core queries on

rapidly changing real-world graphs.

Environment. We implemented our algorithm in C++ and com-

piled with GCC 10.2.0 at O3. We ran on Intel Xeon E5-2683 v4 CPUs

at 2.1 GHz with 256 GB of RAM and CentOS 7. To perform coreness

maintenance, we implemented Order [48]. Any coreness mainte-

nance approach can be used in its place. We include all memory

allocation costs in our runtimes. We use a hash map of vectors to

store the graph, and store both in- and out-edges. We ran five trials

for each experiment and show the results from all trials.

Baseline. As our baseline, we implemented the non-batch main-

tenance approach from [13], which we ported to the case of comput-

ing cores on graphs (see Appendix A).We refer to this as SingleEdge.
When operating on a batch, SingleEdge runs independently for

each edge change. Insertions and deletions can therefore easily

Batch Dynamic Algorithm to Find 𝑘-Core Hierarchies GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

ABC

Baseline

DEF ABCDEF BC

ADEF

C

ABDEF

C

ABDEF

C

ABDEF ABCDEF

ABCDEF

k=2

k=3

k=4

k=5

Our Approach

ABC DEF

ABCDEF

X Y

Shell Tree:

(7 tree changes)

Subcore DAG:
Z

(3 bulk tree changes +
recompute X, Y subcores)

 processing edges in the batch processing batch

Figure 7: Following the example in Figure 6, we compare processing with the baseline SingleEdge (Appendix A) and our batch
approach. The main cost is an increase in memory to store the subcore DAG.

1

10

100

Ar−2005
Orkut LiveJ

Pokec
Patents

BerkStan
Google

YouTube

T
im

e
(s

ec
)

(l
o

g
)

DAG Tree

Figure 8: The ST-Index construction time, broken down into
DAG construction and Tree construction.

1e−05

1e−04

1e−03

1e−02

1e−01

1e+00

Ar−2005
Orkut LiveJ

Pokec
Patents

BerkStan
Google

YouTube

T
im

e
(s

ec
)

(l
o

g
)

Figure 9: The runtime to return C queries, which are low
enough for interactive use.

0.1

1.0

10.0

Ar−2005
Orkut LiveJ

Pokec
Patents

BerkStan
Google

YouTube

T
im

e
(s

ec
)

(l
o

g
)

Figure 10: The runtime to returnH queries.

be mixed. We only show results with insertions as they are the

harder case [13] and there are few known benchmark datasets with

frequent deletions.

Datasets. The graphs thatwe evaluatewith are benchmark graphs

that are representative of real-world graphs from a variety of do-

mains and with different properties. We downloaded them from

Table 1: Graphs used with 𝑛,𝑚 in millions.

Name 𝑛, 𝑚 DAG 𝑛, 𝑚 |𝑇 |
Ar-2005 [6, 7] 22, 640 12, 47 28 K

Orkut [45] 3, 117 1, 22 254

LiveJ [45] 4, 35 2, 12 2 K

Pokec [43] 2, 22 1, 5 54

Patents [27] 4, 17 2, 4 4 K

BerkStan [29] 0.7, 7 0.2, 0.8 2 K

Google [29] 1, 4 0.4, 1.2 5 K

YouTube [45] 1, 3 1, 2.5 140

SNAP [28] (excluding Ar-2005, downloaded from [7]). Table 1 con-

tains statistics on the graphs used, the size of the subcore DAG,

and the size of the tree. We removed self loops, duplicate edges,

and treated graphs as undirected. We randomized the edge order,

simulating a graph stream, and performed our experiments by first

removing random edges and next inserting them.

Experiments. Our main experimental goal is to evaluate the real-

world feasibility of our approach on modern graphs and systems

with highly variable and large batch sizes.

First, we show the index construction time for Batch. The results
are shown in Figure 8. In all cases building the tree ismore expensive

than building the DAG. The overall runtime reinforces the need for

dynamic algorithms as for large graphs, such as Orkut, the DAG

construction takes around 90 seconds and the tree construction

takes around 330 seconds.

Next, we want to show that ST-Index is a useful index for cores.
We report the query times for C in Figure 9 andH in Figure 10 on

ST-Index. For C, we performed queries from 1000 randomly sampled

vertices with uniformly random 𝑘-values such that the vertex is

in a 𝑘-core. We plot the distribution of the runtime results. For all

graphs, all cores are returned in under one second with many in the

tens of milliseconds. It is important to note that, except for Ar-2005,

there is no long tail. In all cases, the distributions are relatively

focused in one time range. Given that our query is efficient the

runtime largely consists of copying memory. The denser the core

the faster the return tends to be, as there are fewer vertices to copy

out. In many cases, the runtimes are fast enough to be used for

interactive applications, e.g., in web page content. ForH , we report

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasimir Gabert, Ali Pınar, and Ümit V. Çatalyürek

Patents BerkStan Google YouTube

Ar−2005 Orkut LiveJ Pokec

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10−6

10−4

10−2

100

102

104

10−6

10−4

10−2

100

102

104

Batch Size (log)

T
im

e
(s

ec
)

(l
o

g
)

FromScratch SingleEdge Batch

Figure 11: Varying the batch size and running Batch, SingleEdge, and FromScratch. Batch is orders of magnitude faster than
SingleEdge for batches above 105 and remains below re-computing from scratch up to 10

6. The data points and LOESS smoothing
lines with 95% confidence intervals are shown.

the time to build and return the full hierarchy, including each node

at each level. This is under 10 seconds for all graphs.

Finally, we maintained cores for 100 batches of different batch

sizes for each graph. The results are shown in Figure 11. In all cases,

when batch sizes are large Batch remains below both FromScratch
and SingleEdge. For a batch dynamic algorithm, we are looking for

the region below re-computing from scratch and below single-edge

algorithsm. In some graphs, such as Pokec and Patents, it is not a

large region, however in all graphs it exists and provides significant

improvements. Future work includes combining the DAG construc-

tion and maintenance with the direct tree maintenance to achieve

an effective hybrid approach, achieving the lower of the all of the

curves. Note that these are log-log plots, and so even for Patents

our batch approach is 2× faster than re-computing from scratch at

batch sizes of one million.

An important take-away of this approach is that, by staying be-

low re-computing from scratch with batches that have millions of

edge changes, but at the same time running quickly on batches with

only a few edge changes, the algorithm can be used in environments

with highly variable change rates in graphs. In many environments,

there are typically periods of high activity, for example if content

becomes viral, major world events occur, or during shopping hol-

idays, and periods of relative calm. Our approach remains useful

across the spectrum.

8 CONCLUSION
We focus on the important but overlooked problem of returning

cores, as opposed to coreness values. We consider both core queries,

which return a 𝑘-core, and hierarchy queries, which return the

full core hierarchy. Our approach applies beyond 𝑘-cores to other

arbitrary nuclei, such as trusses.

We develop algorithms around a tree-based index, the ST-Index,
that is efficient and takes linear space in the number of graph

vertices. We provide an algorithm to construct the ST-Index using a
new approach based on a subcore DAG. We design and implement

a batch maintenance algorithm for ST-Index that uses the same

subcore DAG and can handle variable and large batch sizes. We

show that our approach is able to run faster than edge-by-edge

approaches on rapidly changing graphs and can return cores and

hierarchies fast enough for interactive use.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments.

This work was funded in part by the NSF under Grant CCF-1919021

and in part by the Laboratory Directed Research and Development

program at Sandia National Laboratories. Sandia National Labo-

ratories is a multimission laboratory managed and operated by

National Technology & Engineering Solutions of Sandia, LLC, a

wholly owned subsidiary of Honeywell International Inc., for the

U.S. Department of Energy’s National Nuclear Security Adminis-

tration under contract DE-NA0003525.

REFERENCES
[1] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, and Ö. Ulusoy. Distributed 𝑘-

core view materialization and maintenance for large dynamic graphs. IEEE
Transactions on Knowledge and Data Engineering, 26(10):2439–2452, 2014.

[2] I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. k-core decom-

position: a tool for the analysis of large scale internet graphs. arXiv preprint
cs.NI/0511007, 2005.

Batch Dynamic Algorithm to Find 𝑘-Core Hierarchies GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA

[3] S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis. Distributed k-core

decomposition and maintenance in large dynamic graphs. In Proceedings of the
10th ACM International Conference on Distributed and Event-based Systems, pages
161–168, 2016.

[4] W. Bai, Y. Zhang, X. Liu, M. Chen, and D. Wu. Efficient core maintenance of

dynamic graphs. In International Conference on Database Systems for Advanced
Applications, pages 658–665. Springer, 2020.

[5] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Efficient and effective commu-

nity search. Data mining and knowledge discovery, 29(5):1406–1433, 2015.
[6] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: Amultireso-

lution coordinate-free ordering for compressing social networks. In S. Srinivasan,

K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, editors,

Proceedings of the 20th international conference onWorldWideWeb, pages 587–596.
ACM Press, 2011.

[7] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In

Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
pages 595–601, Manhattan, USA, 2004. ACM Press.

[8] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National
security agency technical report, 16:3–1, 2008.

[9] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities in large

graphs. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 991–1002, 2014.

[10] L. Dhulipala, G. Blelloch, and J. Shun. Julienne: A framework for parallel graph

algorithms using work-efficient bucketing. In Proceedings of the 29th ACM Sym-
posium on Parallelism in Algorithms and Architectures, pages 293–304, 2017.

[11] L. Dhulipala, D. Durfee, J. Kulkarni, R. Peng, S. Sawlani, and X. Sun. Parallel batch-

dynamic graphs: Algorithms and lower bounds. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1300–1319. SIAM,

2020.

[12] M. Eidsaa and E. Almaas. S-core network decomposition: A generalization of

k-core analysis to weighted networks. Physical Review E, 88(6):062819, 2013.
[13] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu. Effective and efficient attributed

community search. The VLDB Journal, 26(6):803–828, 2017.
[14] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin. A survey

of community search over big graphs. The VLDB Journal, 29(1):353–392, 2020.
[15] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao. Effective and efficient community

search over large heterogeneous information networks. Proceedings of the VLDB
Endowment, 13(6):854–867, 2020.

[16] H. A. Filho, J. Machicao, and O. M. Bruno. A hierarchical model of metabolic

machinery based on the k core decomposition of plant metabolic networks. PloS
one, 13(5):e0195843, 2018.

[17] K. Gabert, A. Pınar, and U. V. Çatalyürek. Shared-memory scalable k-core main-

tenance on dynamic graphs and hypergraphs. In 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), Workshop on Parallel
and Distributed Processing for Computational Social Systems (ParSocial). IEEE,
May 2021.

[18] K. Gabert, A. Pınar, and U. V. Çatalyürek. A unifying framework to identify

dense subgraphs on streams: Graph nuclei to hypergraph cores. In Proceedings of
the 14th ACM International Conference on Web Search and Data Mining (WSDM),
WSDM ’21, page 689–697. ACM, Mar 2021.

[19] E. Galimberti, F. Bonchi, F. Gullo, and T. Lanciano. Core decomposition in

multilayer networks: theory, algorithms, and applications. ACM Transactions on
Knowledge Discovery from Data (TKDD), 14(1):1–40, 2020.

[20] J. García-Algarra, J. M. Pastor, J. M. Iriondo, and J. Galeano. Ranking of critical

species to preserve the functionality of mutualistic networks using the k-core

decomposition. PeerJ, 5:e3321, 2017.
[21] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and

O. Sporns. Mapping the structural core of human cerebral cortex. PLoS Biol,
6(7):e159, 2008.

[22] Q.-S. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen. Faster parallel

core maintenance algorithms in dynamic graphs. IEEE Transactions on Parallel
and Distributed Systems, 31(6):1287–1300, 2019.

[23] H. Jin, N. Wang, D. Yu, Q.-S. Hua, X. Shi, and X. Xie. Core maintenance in

dynamic graphs: A parallel approach based on matching. IEEE Transactions on
Parallel and Distributed Systems, 29(11):2416–2428, 2018.

[24] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and

H. A. Makse. Identification of influential spreaders in complex networks. Nature
physics, 6(11):888–893, 2010.

[25] Y.-X. Kong, G.-Y. Shi, R.-J. Wu, and Y.-C. Zhang. K-core: Theories and applications.

Physics Reports, 832:1–32, 2019.
[26] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins, and E. Upfal.

The web as a graph. In Proceedings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 1–10, 2000.

[27] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws,

shrinking diameters and possible explanations. In Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining,
pages 177–187, 2005.

[28] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-

tion. http://snap.stanford.edu/data, June 2014.

[29] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure

in large networks: Natural cluster sizes and the absence of large well-defined

clusters. Internet Mathematics, 6(1):29–123, 2009.
[30] R.-H. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large dynamic graphs.

IEEE Transactions on Knowledge and Data Engineering, 26(10):2453–2465, 2013.
[31] Z. Lin, F. Zhang, X. Lin, W. Zhang, and Z. Tian. Hierarchical core maintenance

on large dynamic graphs. Proceedings of the VLDB Endowment, 14(5):757–770,
2021.

[32] Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang. Global reinforcement of

social networks: The anchored coreness problem. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 2211–2226, 2020.

[33] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou. Efficient (𝛼 , 𝛽)-core

computation: An index-based approach. In The World Wide Web Conference,
pages 1130–1141, 2019.

[34] Q. Luo, D. Yu, X. Cheng, Z. Cai, J. Yu, and W. Lv. Batch processing for truss

maintenance in large dynamic graphs. IEEE Transactions on Computational Social
Systems, 2020.

[35] F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis. The core

decomposition of networks: Theory, algorithms and applications. The VLDB
Journal, 29(1):61–92, 2020.

[36] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph

coloring algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983.
[37] A. E. Saríyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek. Stream-

ing algorithms for k-core decomposition. Proceedings of the VLDB Endowment,
6(6):433–444, 2013.

[38] A. E. Sariyüce and A. Pinar. Fast hierarchy construction for dense subgraphs.

Proceedings of the VLDB Endowment, 10(3):97–108, 2016.
[39] A. E. Sariyuce, C. Seshadhri, A. Pinar, and Ü. V. Çatalyürek. Finding the hierarchy

of dense subgraphs using nucleus decompositions. In Proceedings of the 24th
International Conference on World Wide Web, pages 927–937, 2015.

[40] S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–
287, 1983.

[41] J. Shun, L. Dhulipala, and G. Blelloch. A simple and practical linear-work par-

allel algorithm for connectivity. In Proceedings of the 26th ACM symposium on
Parallelism in algorithms and architectures, pages 143–153, 2014.

[42] M. Sozio and A. Gionis. The community-search problem and how to plan a

successful cocktail party. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 939–948, 2010.

[43] L. Takac andM. Zabovsky. Data analysis in public social networks. In International
scientific conference and international workshop present day trends of innovations,
volume 1, 2012.

[44] M. P. Van Den Heuvel and O. Sporns. Rich-club organization of the human

connectome. Journal of Neuroscience, 31(44):15775–15786, 2011.
[45] J. Yang and J. Leskovec. Defining and evaluating network communities based on

ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.
[46] C. Zhang, F. Zhang, W. Zhang, B. Liu, Y. Zhang, L. Qin, and X. Lin. Exploring

finer granularity within the cores: Efficient (k, p)-core computation. In 2020 IEEE
36th International Conference on Data Engineering (ICDE), pages 181–192. IEEE,
2020.

[47] Y. Zhang and J. X. Yu. Unboundedness and efficiency of truss maintenance in

evolving graphs. In Proceedings of the 2019 International Conference on Manage-
ment of Data, pages 1024–1041. ACM, 2019.

[48] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. A fast order-based approach for core

maintenance. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pages 337–348. IEEE, 2017.

[49] W. Zhou, H. Huang, Q.-S. Hua, D. Yu, H. Jin, and X. Fu. Core decomposition and

maintenance in weighted graph. World Wide Web, pages 1–21, 2020.

A SINGLE EDGE MAINTENANCE
ALGORITHM

The main idea for maintaining the ST-Index edge-by-edge is to

first break apart any core or shell that was increased and then

repair the tree by merging together the paths from the endpoints.

For deletions, a map is made that determines where, after a core

is split, it could return to in the tree. Then, the path from the

core to the root is traversed and any potential split is determined.

Our algorithm shares many similarities to the community search

algorithm of [13]. Our algorithm addresses cores instead of the

more general community search problem on attributed graphs.

Specifically, it does not need to support queries involving subsets

http://snap.stanford.edu/data

GRADES & NDA’22, June 12, 2022, Philadelphia, PA, USA Kasimir Gabert, Ali Pınar, and Ümit V. Çatalyürek

Input: graph 𝐺 = (𝑉 , 𝐸), 𝑒 = {𝑢, 𝑣}, 𝜅−, 𝜅+, ST-Index
= (𝑀,𝑇)

1 if 𝜅− [𝑢] > 𝜅− [𝑣] then swap 𝑢, 𝑣

2 𝐾 ← 𝑀 [𝑢] ⊲ find the tree node for 𝑢

3 𝑆 ← {𝑤 ∈ 𝑉 : 𝜅− [𝑤] ≠ 𝜅+}
4 if 𝑀 [𝑢] .vertices = 𝑆 then

⊲ The entire shell moves as one subcore

5 for 𝑐 ∈ 𝐾.children do
6 if 𝑐.k = 𝑘 + 1 thenMerge(𝐾, 𝑐)
7 𝐾.k← 𝑘 + 1
8 return 𝑇
⊲ We need to merge or create a new sink

9 𝐾.vertices← 𝐾.vertices \ 𝑆
10 𝑋 ← ⟨𝐾,𝑘 + 1, 𝑆⟩ ⊲ new tree node with parent 𝐾 , level 𝑘 + 1, vertices 𝑆
11 for𝑤 ∈ 𝑆 do
12 for 𝑛 ∈ Γ𝐺− (𝑤) \ 𝑆 do
13 if 𝜅+ [𝑛] ≥ 𝑘 + 1 then MergeOrConnect(𝑋,𝑀 [𝑛])

⊲ Merge the path with 𝑣

14 𝑐 ← 𝑀 [𝑣], 𝑙 ← SINK

15 while 𝜅 [𝑐] ≥ 𝜅+ [𝑢] do
16 𝑙 ← 𝑐; 𝑐 ← 𝑐.parent

17 MergePaths(𝑋, 𝑐)
18 return 𝑇

Algorithm 4: SingleEdge (incremental case).

Input: ST-Index = (𝑀,𝑇),𝑈 , 𝑉

1 if 𝑈 = 𝑉 then return
2 if 𝜅 [𝑈] > 𝜅 [𝑉] then swap𝑈 , 𝑉

3 𝑐 ← 𝑉 ; 𝑙 ← SINK

4 while 𝜅 [𝑐] ≥ 𝜅 [𝑈] do
5 𝑙 ← 𝑐; 𝑐 ← 𝑐.parent

6 if 𝜅 [𝑈] = 𝜅 [𝑐] then
7 Merge(𝑈 , 𝑐)
8 return MergePaths(𝑐,𝑈 .parent)
9 else
10 MakeChild(𝑈 , 𝑐)
11 return MergePaths(𝑐,𝑈)
Algorithm 5: MergePaths, which merges two paths starting

from tree nodes𝑈 and 𝑉 until the root.

of vertices. We refer to this approach as SingleEdge. We describe

insertions in detail—deletions are similar but split nodes [13].

Let 𝐾 be the tree node that has a lower 𝜅 value given an edge

insertion. We first check if all of 𝐾 ’s vertices leave. If so, we move

𝐾 down and merge its children with connected subcores. Next,

we iterate through the moved vertices and identify if they are

connected to a shell tree node at level 𝑘 + 1. If so, we merge those

shell tree nodes together. If not, we create a new tree node for the

moved vertices. Then, we walk up the tree from both endpoints

and, starting at level 𝑘 + 1, begin merging all visited vertices. The

algorithm is presented in Algorithm 4, with merge paths presented

in Algorithm 5. A visual depiction is given in Figure 12.

Lemma A.1. The runtime for Algorithm 4 is𝑂 (|Γ(𝑆) | +𝜌𝑛), where
𝑆 is the subcore that increases 𝜅.

K

…

V

…

r

New Edge

Merge paths
to level k+1

Move K to
level k+1

Figure 12: The incremental algorithm process. First, the
tree node corresponding to the smaller 𝜅 level vertex, 𝐾 , is
processed. Next, the paths to 𝐾 and to the tree node being
connected are merged to level 𝑘 + 1.

Proof. In the first part, the modified subcore and all of its im-

mediate neighbors are accessed, resulting in 𝑂 (Γ(𝑆)) work. After
that, in the worst case, the height of the tree will be accessed to

find the closest neighbor to merge in, resulting in 𝑂 (𝜌𝑛) work. □

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Shell Tree Index
	5 Computing the ST-Index
	5.1 Building the Shell Tree

	6 Maintaining the ST-Index
	6.1 Maintaining Coreness
	6.2 Batch Maintenance

	7 Empirical Analysis
	8 Conclusion
	Acknowledgments
	References
	A Single Edge Maintenance Algorithm

