
Shared-Memory Scalable k-Core Maintenance on
Dynamic Graphs and Hypergraphs

Kasimir Gabert
Georgia Institute of Technology

Atlanta, Georgia
Email: kasimir@gatech.edu

Ali Pinar
Sandia National Laboratories

Livermore, California
Email: apinar@sandia.gov

Ümit V. Çatalyürek
Georgia Institute of Technology

Atlanta, Georgia
Email: umit@gatech.edu

Abstract—Computing k-cores on graphs is an important graph
mining target as it provides an efficient means of identifying
a graph’s dense and cohesive regions. Computing k-cores on
hypergraphs has seen recent interest, as many datasets naturally
produce hypergraphs. Maintaining k-cores as the underlying
data changes is important as graphs are large, growing, and
continuously modified. In many practical applications, the graph
updates are bursty, both with periods of significant activity and
periods of relative calm. Existing maintenance algorithms fail
to handle large bursts, and prior parallel approaches on both
graphs and hypergraphs fail to scale as available cores increase.

We address these problems by presenting two parallel and
scalable fully-dynamic batch algorithms for maintaining k-cores
on both graphs and hypergraphs. Both algorithms take advantage
of the connection between k-cores and h-indices. One algorithm is
well suited for large batches and the other for small. We provide
the first algorithms that experimentally demonstrate scalability
as the number of threads increase while sustaining high change
rates in graphs and hypergraphs.

I. INTRODUCTION

An important problem in graph analysis is finding locally
dense regions in globally sparse graphs. In this work we
consider the problem of finding k-cores [1], [2], which are
maximal connected subgraphs with minimum degree at least
k. This problem has seen significant attention due to its
computational efficiency [2] and usefulness on a large number
of problems [3]–[9]. We address computing k-core values, the
largest k such that a vertex is in a k-core. Cores themselves
can then be efficiently computed from the values [10].

Many practically important graphs today, from web data,
social networks, and related fields, are both large and contin-
uously changing. Finding dense regions as quickly as possible
after a change is important, for example to quickly initiate a
response to rapidly spreading false information about vaccines
or to urgently address new pandemic super-spreading events.
We focus on maintaining k-core values over a dynamic graph
with batches containing both edge insertions and deletions.
The maintained k-core values can then be directly queried. The
goal of maintenance algorithms is to drive down the latency
of a query, or the algorithm runtime for processing a single
edge change. This typically comes at a cost of throughput, or
the number of edge changes processed by the total runtime.
A sequential, single-edge maintenance algorithm typically has
both a low latency and throughput, whereas re-computing from
scratch will have both a high latency and throughput.

There are two main approaches for maintaining cores values
on dynamic graphs, traversal [11], [12] and order [13]. When
bursts of large activity come in, they cannot keep up with the
data stream. There has been a recent focus on parallel batch
algorithms to address this problem [14]–[17]. Such algorithms
operate on a batch of edge changes at once, enabling more par-
allelism at the cost of latency for small batches. They provide
a middle ground between computing from scratch and single-
edge maintenance algorithms. There are three known parallel
batch algorithms for cores, all based on the idea of find-
ing independent edges and processing them with traditional,
sequential techniques [18]–[20]. Unfortunately, this approach
does not show much scalability as additional processors are
added (e.g., see Fig. 11 in [19], Fig. 6 in [20].) Given the
increasing rate of data from social and web applications, there
is a strong need for completely new approaches that can scale
as the number of threads grow. We present two new algorithms
to address this gap.

Our algorithms use the connection between h-indices [21]
and k-cores, first identified by Lu et. al [22], which has
been used as a local, distributed algorithm [23], [24] for
computing from scratch. In this algorithm, each vertex has
a local value that is initialized to inifinity. At each step (either
synchronously or asynchronously), the algorithm computes the
h-index of its neighbors’ values. This process will converge
within the number of degree levels of the graph [24]. The
advantage of this process is that, after initialization, each
vertex can operate independently. Building on this, we provide
two scalable maintenance algorithms that maintain k-core
values on batches of graph insertions and deletions. The first,
mod, is based on modifying local values and then “continuing”
convergence. The challenge with this approach is to increment
local values as little as possible. The second, set, follows
the h-index iterations, but keeps track of each edge insertion
made to the graph. The increases happen locally, based on
the given set of insertions and together with convergence.
The mod algorithm provides consistent improvements over
re-computing from scratch for large batches, and the set
algorithm provides improvements for small batches.

In many cases, real-world data is naturally modeled as
hypergraphs instead of graphs [25]. For example, consider
purchasing relationships that consist of users and items.
Hyperedges naturally model multiple users purchasing the



same item. As another example, people may be vertices, and
hyperedges would indicate that they were close enough to
each other to spread diseases during a time period. Here, a
hypergraph k-core would represent a group of people that are
likely to internally spread disease. We want to ensure that
our approaches both apply to hypergraphs and have scalability
when running on hypergraphs. For dynamic hypergraphs, there
are two main models. One model treats each hyperedge as a
single, immutable unit, and operates on a stream of hyperedge
changes. This is the approach taken by [26]. However, this
model cannot capture the dynamic nature of many existing
hypergraphs. For example, consider a hypergraph consisting of
users and topics that the user likes. In real networks, both new
topics are created and users’ preferences change. To model this
behavior, each hyperedge itself can also have internal changes.
We address this more general model.

We provide the following contributions.

• We provide two shared-memory parallel batch algorithms,
mod and set, that maintain k-core decompositions using
the connection between cores and h-indices on both
graphs and hypergraphs

• We introduce strategies to handle parallelism in the more
challenging case of changing hyperedge pins

• We demonstrate our algorithms’ scalability empirically

The remainder of this paper is structured as follows. In
§ II we provide background, including notation used, the
problem we address, and related work. In § III we present
the static algorithms for k-core decompositions. In § IV we
introduce our parallel batch algorithms. In § V we present our
experiments and results, and finally in § VI we conclude.

II. BACKGROUND

A. Notation and Preliminaries

Here we describe the notation used throughout the paper.
We are concerned with both graphs and hypergraphs. Let
G = (V,E) be a graph, where V is a set of vertices and E a
set of edges. We focus on simple, undirected graphs, so each
edge is a set containing two distinct vertices. A hypergraph
H = (V,E) is a generalization of graphs, where V is a set
of vertices and E is a set of hyperedges. In hypergraphs, a
hyperedge is a subset of vertices, e ∈ E such that e ⊆ V . This
means that a hyperedge may contain one or more participating
vertices, compared with exactly two as in a graph. We call the
relationship between a vertex and a hyperedge a pin.

The set of neighbors of a vertex in both cases is given by
Γ(v) = {u ∈ V : ∃e ∈ E, {u, v} ⊆ e}. The degree of a
vertex is the number of neighbors it has, deg(v) = |Γ(v)|.
The maximum degree in a graph or hypergraph is ∆(G)
(∆(H), resp.). Induced subgraphs in hypergraphs cannot split
hyperedges, and so every pin in a hyperedge remains. So, when
an induced subgraph is taken (for example, in a k-core), if
any vertex in a hyperedge has a degree less than k then the
hyperedge is effectively “peeled” from the hypergraph.

2-core

3-core

1-core

3-core

Fig. 1. An example graph and its cores.

B. Computing k-Cores on Static Graphs and Hypergraphs

Cores were introduced concurrently and independently by
[1] and [2]. While the notation differed, in both cases a core
was defined as the following.

Definition 1: Given a graph G and a parameter k, a k-core
of G is a maximal connected subgraph with minimum degree
at least k.
However, over time implementations and approaches dropped
the connectivity constraint [27]. In particular, the focus has
been on computing k-core values, or coreness, the process of
which is called a k-core decomposition. An example graph
with the k-core values shown is given in Figure 1.

Definition 2: Given a graph G and vertex v, the k-core value
of v, denoted κ[v], is the value k such that v is in a k-core
but not in a (k + 1)-core.
Using disjoint-set forests, cores can be maintained from k-
core values quickly [10]. In the remainder, we consider k-core
values when we refer to cores.

The most straightforward way of computing cores is
through “peeling.” [2] In this approach, vertices are iteratively
removed—typically by keeping track of whether they are
active or not, not by modifying the graph—if their degree
is less than k. Any vertex that is removed has its k-core value
assigned as k. When all vertices are removed, the process
stops. If vertices are organized in buckets based on their
degree, this process can be done in O(|V |+ |E|) [2]. Variants
of this approach are used for processing in parallel [28]–[30].
Parallelization in these approaches largely occurs by taking
advantage of parallelism within levels.

A separate approach follows the connection between h-
indices [21] and k-cores [22]. This strategy was first developed
as a distributed algorithm [23] and later shown to be close to
state-of-the-art in a shared-memory setting [24]. The idea of
this approach, presented in detail in Section III, is to iteratively
update a local value associated with each vertex. The local
value on vertices is initialized high, and in each iteration the
h-index of each vertices’ neighbors’ local values is computed.
The process terminates when changes are made. The advantage
of this approach is that each vertex can operate independently,
asynchronously.

In hypergraphs a core is defined exactly the same way: it is
a maximal connected subgraph with minimum degree at least



HyperedgesVertices

2-core

3-core

1-core

3-core

2-core

Fig. 2. An example hypergraph and its cores.

k. Similarly, a k-core value for a vertex in a hypergraph is
the largest value k such that a vertex is in a k-core but not
in any (k + 1)-core. An example hypergraph and its k-core
decomposition is shown in Figure 2.

In hypergraphs, the standard peeling approach works as
well, including in parallel [25]. In Section III we develop an
h-index static computation approach for hypergraphs.

C. Dynamic Graph and Hypergraph Models

We address graphs and hypergraphs that change over time,
which are called dynamic. Dynamic graphs and hypergraphs
can be viewed as an infinite sequence of changes, where
each change is either an edge insertion or deletion. A batch
is an interval on the infinite stream, meaning a collection
of changes close in time that are processed together. Large
batches naturally occur when the arrival of graph changes is
faster than the latency of processing the prior batch. Our goal
is to address large batches in a scalable, parallel manner.

For hypergraphs, the stream can be either at the level of
hyperedge changes or pin changes. In either case, the notion of
a k-core still requires inducing a full hyperedge, separating this
problem from that of bipartite cores [31]. While [26] addresses
hypergraph streams with hyperedge changes, we address the
more general model of pin changes. It is straightforward to
simulate hyperedge changes by setting batch boundaries at
full hyperedges.

D. Related Work

There are two main approaches for maintaining cores on
dynamic graphs, both of which are sequential. The first is the
traversal algorithm [11], [12]. Given a new edge, it performs
a depth-first graph traversal from the endpoint with the lowest
coreness. The traversal remains within a subcore, which is a
connected region with the same coreness value. If it comes
across a vertex unable to increase, it stops searching that path.
The second is the order algorithm [13]. A valid decomposition
order is an ordering of vertices that could arise from peeling.
On an edge insertion, this algorithm corrects the order by
moving vertices that change coreness, keeping their relative
prior order, to the beginning of the next core. The sequential

DA FEB C

Close Interactions (hyperedges)

k=3

k=1

k=3
k=2

Fig. 3. Co-occurrence hypergraphs may be useful for identifying groups
susceptible to pandemics. Boxes are hyperedges. Dark green indicates all
members have κ = 3, orange indicates κ = 2, and blue indicates κ = 1. A
graph representation gives F a high degree and a high core value, even though
it likely has low exposure. In a co-occurrence hypergraph, F would have a
core value of 1 whereas B, C, D, and E would have a value of 3, capturing
that they have close, on-going, and intimate interactions.

order based approach was extended in the truss setting to
handle batches [32].

There are other parallel core maintenance approaches [18]–
[20]. These approaches are traversal-based but identify oppor-
tunities for parallelism by using matchings among edge sets
or independent tree structures. Unfortunately, on real-world
graphs such opportunities are limited, and these approaches
suffer scalability problems as the number of cores grow.
Concurrent to our work, [33] considers h-index based methods
for dynamic core maintenance. Unfortunately, this work is not
parallel and the approach is not competitive against state-of-
the-art sequential methods [13], [32].

Handling k-cores in dynamic hypergraphs has seen recent
attention [26]. The authors identified the need and demon-
strated the importance of solving hypergraph k-cores. How-
ever, [26] presents only an approximate sequential solution,
again based on peeling.

E. Hypergraph k-Cores to Address Pandemics

Computing hypergraph k-cores may be beneficial for identi-
fying groups of individuals to monitor or address for spreading
of diseases, for example to assist in addressing the COVID-19
pandemic. Consider Figure 3. Here, a hyperedge (a rectangle)
is created between any individuals that have close contact
within a time period. In the figure, person A is in a meeting
with person B and E, and so they have close contact and
the first line is a hyperedge connecting them. We call such
a hypergraph a co-occurrence hypergraph. A k-core in this
hypergraph could then identify individuals with significant



Algorithm 1: Asynchronous local algorithm to com-
pute κ [22].

Data: graph G = (V,E)
1 ∀v ∈ V , τ [v]← deg(v)
2 repeat
3 for v ∈ V do in parallel
4 L← 〈〉
5 for w ∈ Γ[v] do
6 L← L.extend(τ [w])
7 τ [v]← H-INDEX(L)
8 until τ no longer changes, converging to κ
9 return τ

close contact with others, in a way that captures deeper
relationships than simply looking at a graph perspective. For
example, for person F, a graph representation would show
them connected with every other individual, with both a high
degree and a high core value. However, they may have been
present only at one meeting, and so would be less likely to
transmit the disease.

The hypergraph k-core instead would place B, C, D, and
E in a 3-core together, as they are each part of 3 hyperedges
where all members are in a 3 hyperedge as well.

This paper provides computational methods to address hy-
pergraph k-cores in parallel, and is motivated by the possible
application to address pandemics; however, the usefulness and
applicability for pandemics remains an open question.

III. STATIC h-INDEX ALGORITHMS

In this section we describe h-index based approaches to
compute cores, which are the foundation of our maintenance
algorithms.

Definition 3: Let S = 〈s1, s2, . . . , sn〉 be a tuple of values,
with si ∈ Z for i ∈ [1, n]. The h-index of S is the largest
value h such that si ≥ h for i ∈ H , where |H| = h and
H ⊆ [1, n].

In this section we describe the prior foundational algorithm,
highlight the challenges in converting them to dynamic main-
tenance algorithms, and describe our final algorithms.

A. h-index Coreness Computation

To understand our algorithms, it is first useful to understand
the asynchronous local h-index algorithm proposed by [22].
This algorithm is re-presented here in Algorithm 1 for com-
pleteness. The local variable τ is initialized to the degree of
each vertex in H . Then, each vertex is iteratively processed
and τ is updated based on the h-index of neighbor’s τ values.
When no further changes occur τ = κ.

This was a breakthrough for computing k-cores as it is
well suited for parallelization: each vertex can update its own
local values, given access to its neighbors’ local values, in
parallel. In the synchronous version each vertex considers
its neighbor’s values from the previous time step. In the
asynchronous version, each vertex takes the latest available
value for each neighbor.

B. Key Problem: How To Reinitialize

Consider Algorithm 1. There are many different possible
initializations for τ . In fact, τ can be initialized to any value
equal to or larger than κ—the degree is chosen simply because
it is an upper bound on κ. It would be possible to use ∞, or
κ[v] + 1, as shown by the convergence of the asynchronous
version [22]. If τ is initialized to ∞, then after only one
iteration τ will recover the degree initialization. The constraint
is that τ cannot be initialized too low, that is, if some vertex
d, τ [d] is initialized below κ[d], τ may fail to converge to κ.

It may seem like simply re-using the prior output, incre-
menting the edge that changed, and continuing the computa-
tion will work. Unfortunately, this is not the case.

Lemma 1: If a τ value is below κ, then Algorithm 1 may
never converge to κ.

Proof: Consider Pn, a path of length n. Note that
∀v ∈ Pn, κ[v] = 1. Let the endpoints be v1 and vn, such that
deg(v1) = deg(vn) = 1. Suppose {v1, vn} is an inserted edge.
Then, suppose that any two consecutive vertices vj , vk have
τ [vj ] = τ [vk] = 1. Now, running Algorithm 1 to convergence
will result in κ[vi] = 1∀i ∈ [1, n], which is incorrect.

As tempting as it is, given Lemma 1 a simple memoization
algorithm will not work.

Furthermore, if only part of the hypergraph is initialized
above κ, then the vertices already at κ do not need to re-
compute each iteration allowing the problem to remain local
to part of the graph. The key problem is that we need to know
the smallest set to increment, and increment those vertices,
before we can run to convergence.

Building on this observation we present two dynamic algo-
rithms along with several variants. In the first algorithm, we
initialize τ values once for each batch, trying to increase τ as
little as possible while ensuring convergence. We keep track
of which vertices in H are already at convergence and do not
perform any computation on them, allowing for batches to run
in o(|H|). In the second, we combine initialization and conver-
gence, allowing for initialization to spread concurrently with
convergence. We keep track of changes to H and propagate
them through the graph, increasing τ values for neighbors that
have not seen the change yet and would be affected by it.

C. Extension To Hypergraphs

We extend Algorithm 1 to hypergraphs. Our extension is
shown in Algorithm 2. In particular, we build the neighbor
list L using the minimum value after excluding the source
vertex. This allows for coreness values to remain correct, as
any vertex with too low of a coreness value will cause the
entire hyperedge to stop contributing.

Theorem 1: Algorithm 2 will correctly return the coreness
values κ.

Proof: The proof follows Thm. 1 in [22]. Induction is
used to bound the h-index sequence both from above and
below by coreness, and convergence is shown as progress is
made every iteration. This results in exactly the coreness.

In the remainder, when we reference graphs, we mean both
graphs and hypergraphs. Graphs can be viewed as a special



Algorithm 2: hhcLocal, extending [22] to hyper-
graphs.

Data: hypergraph H = (V,E)
Input: optional τ initialization, frontier A

1 if τ is not given then ∀v ∈ V , τ [v]← deg(v)
2 if A is not given then A← V
3 repeat
4 for v ∈ A do in parallel
5 A′ ← ∅
6 L← 〈〉
7 for e ∈ E : v ∈ e do

8 L← L.extend

(
min

w∈e,w 6=v
τ [w]

)
9 τ [v]← H-INDEX(L)

10 if τ [v] changed then A′ ← A′ ∪ {v} ∪ Γ(v)
11 A← A′

12 until A = ∅
13 return τ

case of hypergraphs, where each hyperedge has exactly two
endpoints. This is easy to handle in an implementation. When
we explicitly mention hypergraphs, we address problems that
do not apply to graphs.

IV. h-INDEX BASED CORE MAINTENANCE

We now present two dynamic algorithms, both of which
build on the local h-index algorithm presented in [22]: the
first involves incrementing τ across the graph, attempting to
increment as few times as possible. Convergence then occurs
similarly to in Algorithm 1. The second involves combining
initialization and convergence. We keep track of each change
to H and run a modification of the h-index algorithm. As the τ
computation iterates, updates are propagated outwards, causing
vertices to increment their own τ as appropriate. We refer to
this algorithm as set, with setmb additionally optimized with
mini-batches.

These two algorithms come with different tradeoffs. The
re-initialization is useful to provide consistent latencies lower
than a static recomputation, but on many graphs fails to capture
really low latencies. The combined initialization and conver-
gence provides a different advantage: it can have significant
latency improvements, reaching over 104× static computation
on real-world graph instances, but with high variability: with
some batches there are far more iterations as increments
propagate, and there is a computational overhead for checking
whether an update has been processed.

Our algorithms are presented with callback functions, which
are designed to be run when a vertex is inserted into or re-
moved from a hyperedge. The change value c is the direction,
indicating either an insertion (+) or deletion (−).

A. Re-initialization Based Algorithms

In this section we describe our algorithms that are based
on initializing τ and then running Algorithm 2, which result

Algorithm 3: A simple variant of mod that operates
only on a single hyperedge change and maintains κ.
hhcLocal extends Algorithm 2 with active vertices
that, on a local change, make neighbors active and
otherwise go dormant.
Data: hypergraph H = (V,E), local values τ
Input: single hyperedge change y = {d1, . . . , ds}, c
. update the hypergraph

1 for di ∈ y do
2 if c = + then H[y, di]← 1
3 else H[y, di]← 0
. maps are zero-initialized

4 R← {} . map τ values to num. resolved ins.
5 D ← {} . map τ values to num. of deletions
. find a vertex with min τ value

6 dm ← arg mindi∈y τ [di]
7 if c = + then R[τ [dm]]← 1
8 else D[τ [dm]]← 1
9 A← ∅ . active vertices to process

10 for d ∈ V do in parallel
. apply the resolved count

11 τ [d]← τ [d] +R[τ [d]]
. mark changed vertices as active

12 if R[τ [d]] ≥ 0 or D[τ [d]] > 0 then
13 A← A ∪ {d}
14 hhcLocal(A, τ), using vertices A and initialized to τ

in fewer iterations than static computation in many instances.
This problem was shown to be unbounded in the locally
persistent model [32], and so we cannot expect to do better
than re-running from scratch in all cases. This result also
means that we need to ensure our worst-case complexity
matches computing from scratch, but we cannot expect to have
a better complexity.

Differing significantly from state-of-the-art core and truss
maintenance algorithms [13], [32], we do not maintain an
order of the vertices. Instead, we make larger increments than
necessary and let the parallel local h-index approach resolve
them.

We begin by introducing a simple, non-batch variant of
our algorithm, presented in Algorithm 3. Our batch approach
naturally extends from there to the full mod algorithm shown
in Algorithm 4.

We know that for a single edge insertion in H , the κ value
will only change for the involved minimum κ valued vertex
(by [11]). However, we will be performing multiple updates
in a batch. This means that the τ values are, at this point
in time, potentially smaller than κ. So, we cannot identify
which vertex has the minimum κ and instead increment all
κ values that participate in the modified hyperedge. In lines
5-12 we deal with the situation where the subcore, or part
of it, has moved after some other insertion or deletion. We
conservatively increment in as many potential parallel cases
as possible, such as when the subcore is broken, part of it



Algorithm 4: The mod algorithm.
Data: hypergraph H = (V,E), local values τ
. Insertion callback

1 Function f-mod(ea, vb, c):
2 if ∃vi ∈ ea s.t. τ [vb] > τ [vi] then return
3 if c = + then I[τ [vb]]← I[τ [vb]] + 1
4 else D[τ [vb]]← D[τ [vb]] + 1

Input: batch edge set B
1 I ← {} . map τ values to num. of insertions
2 D ← {} . map τ values to num. of deletions
3 R← {} . map τ values to num. resolved ins.
4 MaintainH(f-mod, B)
. increment as many possible subcore levels and values that

could arise from concurrent execution
5 for k ∈ keys(I) do in parallel

. increment as if some subcore at κ = k decreased and
merged with another

6 for t = k −D[k] to k − 1 do
7 R[t]← R[t] + I[k]
8 R[k]← R[k] + I[t]
9 R[k]← I[k] . increment if stayed at level

. increment as if some subcore at κ = k increased and
merged with another

10 for t = k + 1 to k + I[k] do
11 R[t]← R[t] + k + I[k]− t
12 R[k]← R[k] + I[t]
13 A← ∅ . active vertices to process
14 for d ∈ V do in parallel

. apply the resolved counts
15 τ [d]← τ [d] +R[τ [d]]

. mark changed vertices as active
16 if R[τ [d]] ≥ 0 or D[τ [d]] > 0 then
17 A← A ∪ {d}
18 hhcLocal(A, τ), using vertices A and initialized to τ

merged with smaller subcores, and more.
If a κ value changes for a vertex, two properties must hold:

that vertex must have a specific starting κ value and they must
be connected to the hyperedge change (again by [11]). The
mod algorithm exclusively uses the κ value and ignores the
connectivity.

Additionally, we perform an important optimization: the
minimums on hyperedges are cached. It is possible to only
store a single minimum, as this will not have a negative impact
on the convergence or correctness.

B. Processing in Parallel with Pin Changes

The problem becomes more complicated for re-initialization
algorithms as we deal with a stream of pin changes instead
of hyperedge changes. For each pin deletion, this can result
in both an increase and a decrease in κ values for different
nodes. The hyperedge that loses the pin may in fact gain
a new κ value for all other vertices. This will happen if
the pin is exactly the lowest valued vertex in the hyperedge.

2

2

2

2

2

1
2

0

0

0

Fig. 4. A notional example showing why increments need to be sufficiently
high. The dotted lines are new edges and the solid lines are existing edges.
Even though edges are only added to the κ = 1 vertex, after the batch is
processed all vertices need to increase to κ = 3.

Add Change to
Hypergraph

If "safe", process
immediately

If "unknown",
save to a parallel

list

Parallel hash
map of <tau
values, inc>

Resolve
increments in

possible ranges

Find any that can
be processed

Updates finished

Fig. 5. The process of performing increments based on a hyperedge change.
Safe means the change can be concretely resolved, that is the possible
positions of the pin in the hyperedge range is known.

Additionally, the vertex that the pin connects to may drop its
k-core value. With insertions, both an increase in the core
value for the vertex with the pin and a decrease in the core
value for every other vertex in the hyperedge can occur.

This complicates the decision for resolving increments and
increases the number of increments and decrements that have
to happen. An example showing the complication is given
in Figure 4. This results in significantly more book-keeping
for the process in lines 5-12. The full, parallel process in the
implemented system can be seen in Figure 5. Here, given a
change to the hypergraph, we need to keep track of whether the
change can be processed immediately or needs to be resolved
later. This process iterates until all changes have been resolved.

Concretely, we break the problem down into four cases.
Here, we present the cases dealing with deletions. For inser-
tions, the deletions and insertion changes are swapped.

• Case 1: the hyperedge no longer exists. Find the min
range within the previous hyperedge vertices’ ranges and
decrement this range.

• Case 2: the min range of the deleted pins can be smaller
than the prior min range. Decrement within the min range



Algorithm 5: The set algorithm, which mixes incre-
menting τ and converging τ . The id function resets
each batch and increments on distinct ea inputs.

Data: hypergraph H = (V,E), local values τ
. Insertion callback

1 Function f-set(ea, vb, c):
2 A[vb]← 2 . maximum time-to-live
3 if c = + then U [vb]← U [vb] ∪ {id(ea)}

Input: batch edge set B
1 A,U, P ← {}, {}, {}
2 MaintainH(f-set, B)
3 repeat
4 c← false
5 for x ∈ V do in parallel
6 if A[x] = 0 then continue
7 Ux ← U [x] . U [x] may change
8 L← ∅ . list of neighbor values
9 for e ∈ E : x ∈ e do

10 m←∞
11 for n ∈ e : n 6= x do

. Consider un- or processed hypergraph
changes for n

12 t← τ [n] + |U [n] ∪ (Ux \ P [n])|
13 if t < m then m← t
14 L← L ∪m
15 τ ′ ← H-INDEX(L)

. Determine if our τ changed
16 if τ ′ 6= τ [x] then

. Update the neighbors
17 for n ∈ e such that x ∈ e and n 6= x do
18 U [n]← U [n] ∪ (Ux \ P [n])
19 A[n]← 2
20 τ [x]← τ ′

21 A[x]← 2
22 else
23 A[x]← A[x]− 1
24 P [x]← P [x] ∪ Ux

25 U [x]← U [x] \ Ux

26 c← true
27 until c = false

of the deleted pins and increment within the min range
of the existing hyperedge.

• Case 3: no deleted pins had vertices within the min range.
This is marked unknown and will be revisited.

• Case 4: the deleted pins min range may overlap the prior
min range. Decrement the middle range.

Note that everywhere we use ranges instead of concrete κ
values, as they will be processed in a loop until convergence.

C. Mixing Initialization and Convergence

In this section we describe our set algorithm, which mixes
initialization of τ and convergence concurrently. This algo-
rithm deviates internally from Algorithm 2. Each hyperedge

change is recorded and its history is remembered for the course
of the batch. During each h-index computation, the neighbors
of a vertex are considered but instead of reading τ directly, τ
is read and each potential graph change is applied. If this will
result in a change to that vertex, then the change is propagated.
Otherwise, the change stops.

This allows for a small part of the graph to be visited,
but in the worst case will result in additional iterations and
additional work, as each change may slowly propagate to
the whole graph before regular τ convergence, increasing the
number of iterations by the diameter of the graph. We present
this approach in Algorithm 5. In the callback, each vertex
is marked as having the modification “unprocessed.” Then,
lines 7-25 contain the mixed convergence with increments.
First each neighbor is considered. Instead of setting the new τ
value based on the h-index of the neighbor’s τ values, it sets
τ based on the h-index the neighbor’s currently unprocessed
modifications, plus the modifications neither the vertex nor
the neighbor has processed. Differing from the re-initialization
algorithms, vertices stay active for one extra iteration after
convergence. This allows for convergence to occur when U [x]
is updated while x is currently processing and covers cases
where a propagation changes from incrementing to converging.

While the updates are propagating the memory may con-
tinue to grow across the hypergraph, as more U and P entries
are being set. There are a variety of ways to realize this in
implementation, some of which come with more expensive
memory requirements. We considered using boolean vectors,
dynamic bit vectors, and fixed-size pre-allocated bit vectors
coupled with mini-batches. Our experiments are all performed
with mini-batches (setmb), with batch sizes of 64. Mini-
batches stopped iterating when P became empty for all
vertices with a final batch iteration to converge τ .

The correctness of this algorithm comes from the obser-
vation that if the frontier of an update will not cause any
further increase in τ values, then it is not necessary to further
propagate the update.

D. Runtime and Memory Complexity

Prior work has shown that the worst-case runtime complex-
ity of a dynamic core maintenance algorithm is the same as
re-computing from scratch [32]. As such, our h-index method
has the same runtime as recomputing from scratch, which is
formally studied in [24] and is the same as peeling, O(n+m).
We stress that the variance between graphs and even batches
is not well understood and remains an open question. For our
memory complexity we store κ values for each vertex and,
with setmb, we store set lists as single 64-bit integers. Finally,
we store additional data for each batch bound by the number
of edges in a batch. So, the memory complexity is O(n+m).

V. EXPERIMENTS AND RESULTS

In this section we perform experiments to empirically
demonstrate the scalability of our two algorithms, mod and
setmb, as graphs become bursty.



TABLE I
GRAPHS USED FOR OUR EXPERIMENTS.

Name Vertices Edges

OrkutLinks 3.07 M 240 M
LiveJ 3.99 M 37.4 M
Pokec 1.63 M 22.3 M
Patents 3.77 M 16.5 M
DBLP 1.82 M 8.34 M
WikiTalk 2.39 M 4.66 M
Google 0.88 M 4.32 M
YouTube 3.22 M 9.38 M

TABLE II
HYPERGRAPHS USED FOR OUR EXPERIMENTS.

Name Vertices Hyperedges Pins

OrkutGroup 2.8 M 8.7 M 327 M
WebTrackers 27 M 13 M 141 M
LiveJGroup 3.2 M 7.5 M 11.M

We implemented our algorithms in C++17 and compiled
with GCC 10.2.0 and -O3. We use Intel TBB to provide
parallel hash maps to store the graph (with the edge lists
stored as vectors) and both TBB and OpenMP to parallelize
execution. We ran on Intel Xeon E5-2683 v4 CPUs with 512
GB RAM and dual sockets and used numactl to set thread
counts. We checked correctness against Ligra [25].

Unfortunately we were not able to compare against alterna-
tive parallel approaches due to a lack of available implementa-
tions [18]–[20]. We note that against the reported runtimes, we
are around 4× faster, however we are using different hardware
and systems. We stress that none of the prior systems have
demonstrated shared-memory scalability.

While we do not test vertex changes directly, in all of
our experiments vertices are deleted when their degree drops
to zero and created when their degree increases from zero.
Our implementation does not require vertex labels to be
contiguous, and so it supports hypersparse graphs where many
implied vertices have a degree of zero. We use 64-bit unsigned
integers to store vertex IDs.

A. Datasets

We chose a variety of graphs from domains representing
social networks, citation networks, and web data. The graphs
are shown in Table I and the hypergraphs are shown in
Table II. The graph datasets were download from SNAP [34]
and the hypergraphs from KONECT [35]. As these graphs
are not ordered temporally and do not have deletions, we
simulated edge insertions and deletions as follows. First, we
uniformly randomly select pins or edges and remove them
from the graph. We then insert them back again, and time both
the removal and insert. To test mixed insertion and removal
times, we set our removal and insert size to be 3/2 the full
batch size. The number of edges or pins in the graph is
a major factor in runtime, and the maximum coreness and
complexity of core hierarchy additionally impact runtime.

100 edges 10k edges 1m edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e

c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Fig. 6. The mod algorithm’s scalability for processing edge insertions at
different batch sizes. Insertion-only edge batches with mod.

1 edge 10 edges 100 edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Fig. 7. Insertion-only edge batches with setmb.

Future work includes characterizing graphs and batches to
determine runtime behavior.

In each experiment, batches were removed and then re-
inserted 50 times. Error bars show one standard deviation from
the mean. We chose batch sizes based on expected real-world
ranges for each algorithm. We do not show the results for
setmb for hypergraphs, as it will require caching values on
hyperedges to be competitive against mod.

B. Insertion Scalability

First, we measure the scalability for handling insertions for
both mod and setmb. The results can be seen in Figure 6–7.
In both cases, as the cores increase the total runtime decreases.
Choosing to run setmb for very small batches and mod
for larger batches would be effective for a wide range of
insertions. Additionally, setmb has a very high variance on the
larger graphs. While it provides the smallest runtimes on small
batches, it also has high outliers that significantly increase the
average. Future work can address reducing the variance and
the maximum cost. For some graphs, moving from 16 to 32
threads decreases performance slightly.

Note that the total runtime for small batches with mod is
only slightly less than large batches, although we show results
in log log plots. In many cases moving from 100 to 1 million
results in only around a 1.5× increase in runtime. This is



10 pins 100 pins 10k pins

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e

c
)

OrkutGroup WebTrackers LiveJGroup

Fig. 8. Insertion-only pin batches with mod.

100 edges 10k edges 1m edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

0

1

4

16

64

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Fig. 9. Deletion-only edge batches with mod.

due to incrementing some edges that have a small coreness
value, causing large parts of the graph to be impacted. This
reduces the variance between batches but introduces additional
work. Future work could find how to identify changes that
result in mod incrementing many values and then process
those separately with setmb, forming a hybrid approach that
improves the overall runtime while retaining scalability and
reducing long tails.

In Figure 8 we show the scalability for running mod on
the hypergraphs. For WebTrackers, the performance decreases
in all cases after 8 threads, however for OrkutGroup and
LiveJGroup the performance continues to decrease after the
NUMA boundary. With up to 8 threads on those graphs the
scalability is close to linear.

C. Deletion Scalability

We measure the scalability for performing just edge dele-
tions with both mod and setmb. The results can be seen
in Figures 9–11. For both mod and setmb, the performance
tends to decrease as the batch sizes get larger and increase as
the number of threads increasing, showing that this approach
similarly scales on deletions. For setmb, even with large
batches the latency for deletions is low.

When deleting pins in hypergraphs, the variance can become
large. For example, see OrkutGroup with 10k pins. Both the

1 edge 10 edges 100 edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

2
−12

2
−10

2
−8

2
−6

2
−4

2
−2

2
0

Threads

T
im

e
 (

s
e

c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Fig. 10. Deletion-only edge batches with setmb.

10 pins 100 pins 10k pins

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

2
−4

2
−2

2
0

2
2

2
4

2
6

Threads

T
im

e
 (

s
e
c
)

OrkutGroup WebTrackers LiveJGroup

Fig. 11. Deletion-only pin batches with mod.

insertion and deletion variance for a small number of pin
changes is high.

D. Mixed Insertions and Deletions

One advantage of our proposed algorithms is that they do
not require pre-processing on the stream to separate deletions
and insertions. Instead, insertions and deletions can be handled
concurrently. Our results show similar scalability for mixed
batches as with insertions. For example, in Figure 12 we show
the mixed batches for mod. Note the similarity to Figure 6.

100 edges 10k edges 1m edges

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

1

4

16

64

256

Threads

T
im

e
 (

s
e
c
)

OrkutLinks

LiveJ

Pokec

Patents

DBLP

WikiTalk

Google

YouTube

Fig. 12. Mixed batches with mod.



VI. CONCLUSION

We present two scalable, parallel batch k-core maintenance
algorithms that operate on fully dynamic graph and hypergraph
streams. These algorithms differ from prior approaches in that
they build on the connection between h-indices and k-cores.
We address two models for dynamic hypergraphs, one with
hyperedge changes and one with pin changes. Our imple-
mentations empirically scale well on shared-memory systems,
exceeding the scaling performance of prior algorithms.

Future work includes combining the two approaches into a
hybrid approach that can provide both low latencies for small
batches but addresses high variance, introducing approximate
results during very high batch rates, and implementing these
algorithms in distributed systems to further explore scalability.

ACKNOWLEDGMENT

This work was funded in part by the Laboratory Directed
Research and Development program at Sandia National Labo-
ratories. Sandia National Laboratories is a multimission labo-
ratory managed and operated by National Technology & Engi-
neering Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

REFERENCES

[1] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[2] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering
and graph coloring algorithms,” Journal of the ACM (JACM), vol. 30,
no. 3, pp. 417–427, 1983.

[3] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins,
and E. Upfal, “The web as a graph,” in Proceedings of the nineteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, 2000, pp. 1–10.

[4] I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani, “k-core
decomposition: a tool for the analysis of large scale internet graphs,”
arXiv preprint cs.NI/0511007, 2005.

[5] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J.
Wedeen, and O. Sporns, “Mapping the structural core of human cerebral
cortex,” PLoS Biol, vol. 6, no. 7, p. e159, 2008.

[6] M. P. Van Den Heuvel and O. Sporns, “Rich-club organization of the
human connectome,” Journal of Neuroscience, vol. 31, no. 44, pp.
15 775–15 786, 2011.

[7] J. Garcı́a-Algarra, J. M. Pastor, J. M. Iriondo, and J. Galeano, “Ranking
of critical species to preserve the functionality of mutualistic networks
using the k-core decomposition,” PeerJ, vol. 5, p. e3321, 2017.

[8] H. A. Filho, J. Machicao, and O. M. Bruno, “A hierarchical model
of metabolic machinery based on the k core decomposition of plant
metabolic networks,” PloS one, vol. 13, no. 5, p. e0195843, 2018.

[9] Y.-X. Kong, G.-Y. Shi, R.-J. Wu, and Y.-C. Zhang, “K-core: Theories
and applications,” Physics Reports, vol. 832, pp. 1–32, 2019.

[10] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu, “Effective and efficient
attributed community search,” The VLDB Journal, vol. 26, no. 6, pp.
803–828, 2017.

[11] A. E. Sarı́yüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V.
Çatalyürek, “Streaming algorithms for k-core decomposition,” Proceed-
ings of the VLDB Endowment, vol. 6, no. 6, pp. 433–444, 2013.

[12] R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in
large dynamic graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 10, pp. 2453–2465, 2013.

[14] D. Ediger, R. McColl, J. Riedy, and D. A. Bader, “Stinger: High perfor-
mance data structure for streaming graphs,” in 2012 IEEE Conference
on High Performance Extreme Computing. IEEE, 2012, pp. 1–5.

[13] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach
for core maintenance,” in 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). IEEE, 2017, pp. 337–348.

[15] N. Simsiri, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Work-
efficient parallel union-find with applications to incremental graph
connectivity,” in European Conference on Parallel Processing. Springer,
2016, pp. 561–573.

[16] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala, “Parallel
batch-dynamic graph connectivity,” in The 31st ACM Symposium on
Parallelism in Algorithms and Architectures, 2019, pp. 381–392.

[17] L. Dhulipala, G. E. Blelloch, and J. Shun, “Low-latency graph streaming
using compressed purely-functional trees,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 918–934.

[18] N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q.-S. Hua, “Parallel
algorithm for core maintenance in dynamic graphs,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 2366–2371.

[19] H. Jin, N. Wang, D. Yu, Q.-S. Hua, X. Shi, and X. Xie, “Core main-
tenance in dynamic graphs: A parallel approach based on matching,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 11,
pp. 2416–2428, 2018.

[20] Q.-S. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen,
“Faster parallel core maintenance algorithms in dynamic graphs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 6, pp.
1287–1300, 2019.

[21] J. E. Hirsch, “An index to quantify an individual’s scientific research
output,” Proceedings of the National academy of Sciences, vol. 102,
no. 46, pp. 16 569–16 572, 2005.

[22] L. Lü, T. Zhou, Q.-M. Zhang, and H. E. Stanley, “The h-index of a
network node and its relation to degree and coreness,” Nature commu-
nications, vol. 7, p. 10168, 2016.

[23] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” IEEE Transactions on parallel and distributed systems,
vol. 24, no. 2, pp. 288–300, 2012.

[24] A. E. Sariyüce, C. Seshadhri, and A. Pinar, “Local algorithms for hierar-
chical dense subgraph discovery,” Proceedings of the VLDB Endowment,
vol. 12, no. 1, pp. 43–56, 2018.

[25] J. Shun, “Practical parallel hypergraph algorithms,” in Proceedings of the
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2020, pp. 232–249.

[26] B. Sun, T.-H. H. Chan, and M. Sozio, “Fully dynamic approximate k-
core decomposition in hypergraphs,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 14, no. 4, pp. 1–21, 2020.

[27] A. E. Sariyüce and A. Pinar, “Fast hierarchy construction for dense
subgraphs,” Proceedings of the VLDB Endowment, vol. 10, no. 3, pp.
97–108, 2016.

[28] N. S. Dasari, R. Desh, and M. Zubair, “Park: An efficient algorithm
for k-core decomposition on multicore processors,” in 2014 IEEE
International Conference on Big Data (Big Data). IEEE, 2014, pp.
9–16.

[29] H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore
platforms,” in 2017 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW). IEEE, 2017, pp. 1482–1491.

[30] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proceed-
ings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, 2017, pp. 293–304.

[31] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient
(α, β)-core computation: An index-based approach,” in The World Wide
Web Conference, 2019, pp. 1130–1141.

[32] Y. Zhang and J. X. Yu, “Unboundedness and efficiency of truss main-
tenance in evolving graphs,” in Proceedings of the 2019 International
Conference on Management of Data. ACM, 2019, pp. 1024–1041.

[33] L. Gao, G. Gao, D. Ma, and L. Xu, “Coreness variation rule and fast
updating algorithm for dynamic networks,” Symmetry, vol. 11, no. 4, p.
477, 2019.

[34] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[35] J. Kunegis, “KONECT – The Koblenz Network Collection,” in
Proc. Int. Conf. on World Wide Web Companion, 2013, pp. 1343–
1350. [Online]. Available: http://userpages.uni-koblenz.de/∼kunegis/
paper/kunegis-koblenz-network-collection.pdf

http://snap.stanford.edu/data
http://userpages.uni-koblenz.de/~kunegis/paper/kunegis-koblenz-network-collection.pdf
http://userpages.uni-koblenz.de/~kunegis/paper/kunegis-koblenz-network-collection.pdf

	Introduction
	Background
	Notation and Preliminaries
	Computing k-Cores on Static Graphs and Hypergraphs
	Dynamic Graph and Hypergraph Models
	Related Work
	Hypergraph k-Cores to Address Pandemics

	Static h-index Algorithms
	h-index Coreness Computation
	Key Problem: How To Reinitialize
	Extension To Hypergraphs

	h-Index Based Core Maintenance
	Re-initialization Based Algorithms
	Processing in Parallel with Pin Changes
	Mixing Initialization and Convergence
	Runtime and Memory Complexity

	Experiments and Results
	Datasets
	Insertion Scalability
	Deletion Scalability
	Mixed Insertions and Deletions

	Conclusion
	References

